
Real-time Ray Tracing through the Eyes of a Game Developer
Jacco Bikker∗

IGAD / NHTV University of Applied Sciences
Breda, The Netherlands

Figure 1: Real-time ray traced images from our experimental ARAUNA engine, used in a student project.

ABSTRACT

There has been and is a tremendous amount of research on the topic
of ray tracing, spurred by the relatively recent advent of real-time
ray tracing and the inevitable appearance of consumer hardware ca-
pable of handling this rendering algorithm. Besides researchers,
the prospect of a brave new world attracts hobbyists (such as demo
coders) and game developers: Ray tracing promises an elegant and
fascinating alternative to z-buffer approaches, as well as more in-
tuitive graphics and games development. This article provides a
view from the inside on ray tracing in games and demos, where the
emphasis is on performance and short-term practical usability. It
covers the way science is applied, the unique contribution of these
developers to the field and their link with the research community.

The Arauna ray tracer, developed at the NHTV university of ap-
plied science, is used as an example of a ray tracer that has been
specifically build with games and performance in mind. Its pur-
pose and architecture, as well as some implementation details are
presented.

Index Terms: I.3.7 [Computer Graphics]: Three-dimensional
Graphics and Realism—Ray Tracing

1 INTRODUCTION

Ray tracing always has intrigued programmers of all sorts. It is an
interesting algorithm: A ray tracer can be implemented in 100 lines
of C code [3], yet it produces images that put those produced by
rasterizers to shame. The core idea is compact, and not very hard to
implement, but a naı̈ve implementation is incredibly slow.

The ray tracing algorithm has attracted a lot of attention: If we
measure the complexity of a problem by the number of papers that
were written about it, ray tracing certainly is a major challenge.
This challenge is not just recognized by researchers: Since the
early days of the home computer, demo coders and game devel-
opers (with or without an academic background) have built their
own tracers. Often with amazing results: Real-time ray tracing in
a PC demo was done as early as 1995 [1]. More recently, demos

∗e-mail: bikker.j@nhtv.nl

like Heaven7 [5] and the RealStorm benchmark [6] displayed the
capabilities of this somewhat invisible demoscene movement [24].

The importance of ray tracing for games has also been recog-
nised by researchers [17]. Ray tracing has been used extensively
for offline rendering of game graphics (e.g. Myst and Riven [36])
and for lighting preprocessing as in e.g. Quake 2 [12]. Games are
also frequently used as a test-case for real-time ray tracing: At the
Breakpoint 2005 demo party, a fully playable real-time ray traced
version of Quake 2 was shown by Wächter and Keller [14]. Ray
traced versions of animated Quake 3 [19] and Quake 4 [20] walk-
throughs where shown running on a PC cluster, and even the PS3
gameconsole is already being used for ray tracing [2].

Today, it has become clear that advancing ray tracing perfor-
mance is not just a matter of better high-level algorithms: Low level
optimization plays a crucial role. It is also clear that ray tracing per-
formance is not dependent of fast ray traversal alone: Shading cost
plays a significant role in real-time ray tracing [21, 31].

This article presents a description of the construction of the
Arauna ray tracer, which was build as an exercise in applied sci-
ence and with performance in mind. The Arauna ray tracer project
started as an attempt to implement the ideas presented in Wald’s
PhD thesis on real-time ray tracing [30]. While previous attempts at
interactive ray tracing used approximations (e.g., the Render Cache
[34], the holodeck ray cache [15]), the OpenRT ray tracer [23]
simply sped up the core algorithm to real-time levels on commod-
ity hardware by employing instruction-level and thread-level paral-
lelism, as well as low level optimizations. Since those early days,
Arauna evolved into an experimentation platform in order to try out
the various ideas presented in recent research papers. Arauna does
not claim to be groundbreaking; its aim is to combine and optimize,
and, more recently, to offer a platform for students to experiment as
an alternative to rasterization.

1.1 Overview

The remainder of this article is organized as follows: Section 2 de-
tails the design goals of the ray tracer, which influenced the overall
design and determined the focus. Section 3 discusses implementa-
tion details of the ray tracer. Attention is payed to the high-level
algorithms that were used (Section 3.1) and the shading pipeline
(Section 3.2), as well the low level optimizations and their impact
on the overall performance (Section 3.3). Some statistics for com-
parison purposes are presented (Section 4), and areas of ongoing

research are discussed (Section 5). Section 6 finally lists open is-
sues and provides recommendations.

2 PHILOSOPHY AND DESIGN DECISIONS

To understand the design decisions taken during the development
of Arauna, it is necessary to explain its intended purpose. From
the start, Arauna was meant to be a real-time ray tracer; later on
this converged to the goal of creating a real-time ray tracing demo,
and recently, the aim became to build games using it. A clear goal
allows for focused development using limited resources (i.e., time).
It also prevents conflicts, when performance needs to be traded for
image fidelity or vice versa. The main design decisions are:

Arauna is a real-time ray tracer. It provides a simplified shading
model, which is using ambient, diffuse, specular and emis-
sive components, and an approximation to quadratic fall-off
for lights, which allows us to discard lights beyond a certain
distance (see Section 3.2.1). This enables scenes with many
lights, an important feature for game development.

Attractive visual appearance: Ray tracing has the potential to
surpass rasterization. Demonstrating and experimenting with
this potential is an important goal of this project: The focus is
therefore on graphical features that a ray tracer does better (or
more elegantly), such as shadows, reflections and refraction,
as well as finding elegant solutions for commonly used effects
such as fog, glow and particles.

Target performance: Arauna aims to deliver 100M rays/s for typ-
ical game environments on a single 1.86Ghz 8-core machine.
This kind of hardware is exotic right now, but within a year,
this will be high-end consumer hardware. This target is in-
spired by GPU benchmarks such as 3Dmark06 [7], which of-
ten require the very latest 3D hardware to run reasonably well.
Note that Arauna does not support network rendering to in-
crease the number of available CPUs. While supporting this
makes sense for a more generic ray tracer, it is unlikely that
gamers will use such a feature.

The scenes that will be rendered are mostly static. Games in
general use far more static geometry than dynamic geometry,
and even though a perfect ray tracer (or a perfect rasterizer,
for that matter) handles fully dynamic environments, in
practice, this considerably degrades overall performance.
Exploiting knowledge about the scene is essential for high
performance; a high-performance ray tracer should do this as
well.

Arauna is implemented in C++. Low-level optimization is an
important part of the project, but this will not include hand-
coded assembler. The main reasons for this are: Reduced de-
velopment time, increased portability and maintainability, and
easier experimentation with new ideas.

No GPU ray tracing. Developing a GPU ray tracing path is a sig-
nificant effort; combining this with rasterization for first hit
optimization and perhaps even CPU ray tracing severely com-
plicates development and reduces the flexibility of the exper-
imentation platform.

These design decisions are not presented as ”the best choice”, but
rather as background information for the remainder of this article.

3 IMPLEMENTATION

The Arauna ray tracer is currently being developed and used for a
student project (see Figure 1 and 12). The aim of the project is to
make a proof-of-concept game based on ray tracing as the prime
rendering algorithm, and to expose students to this. The student

Figure 2: Visualizing kD-tree traversal depth.

team consisted of five programmers (one of which focuses on game
design) and four visual artists. The artists each have a speciality,
ranging from texturing and props modeling to scene modeling. The
programmers also specialize: Some focus on game coding, while
others like to experiment with the ray tracing core.

Creating art for a ray tracer is different from creating art for a ras-
terizer. As triangle count is not really an issue, performance tends
to depend on other factors instead. Because of this, the artists devel-
oped some extremely detailed objects for a game level, which did
not hurt performance, but did result in severe aliasing effects caused
by the many small triangles. Reducing the triangle count of these
objects and using normal mapping instead solved the problem.

3.1 Accelerated Ray Tracing
Finding intersections between rays and primitives in the scene is
the core process in a ray tracer. To speed up this process, an ac-
celeration structure is used. In his thesis, Havran recommends the
kD-tree for ray tracing static scenes[9]: This structure performs (on
average) better than alternatives, such as BVH’s, (nested) grids, oc-
trees, and generic BSP trees.

Apart from rendering, ray tracing is also used for the game it-
self. Rays are used to make grenades bounce, to determine a line of
sight, and to detect collisions. Compared to (conservative) polygon-
based collision detection, using a ray tracer for this is efficient, even
though only approximate, and easy to implement [26].

3.1.1 kD-tree Construction
Arauna uses a kD-tree based on the surface area heuristic [8, 16].
The construction of the tree is a greedy algorithm, based on Wald
and Havran’s notes [32]. To calculate the best split plane position at
each level of the kD-tree, a sorted linked list of primitive boundaries
(primitive ’start’ and ’end’ events, Figure 3b) must be maintained
over three axes. To represent this data, a structure that is based on
the primitive bounding box is used: the EventBox (Figure 3a).
An EventBox contains two next pointers per axis, one for the
start event, and another one for the end event.

a) b)

Figure 3: Constructing kD-trees. a) The EventBox contains a next
pointer per axis, per side of the primitive bounding box. b) Sorting
events using the EventBox: The start event of the first box links to
the start event of the second box.

Several researchers suggest that biasing the cost calculated using
the SAH improves the quality of the kD-tree (Reshetov et al. [21],
Wald et al. [32]). This requires two parameters: The minimum
amount of empty space that may be cut off this way, and the ’bonus’
multiplier, i.e. the value that the cost is multiplied with to encour-
age such a split. For the first parameter, Reshetov et al. suggest
a value of 10%. For the second parameter, Wald et al. suggest a
value of 0.8. Both parameters are apparently determined emperi-
cally, and figures about the impact of the bias on the performance
of ray queries are not given.

Tests in Arauna indicate that the performance gains of empty
space cut-off for ray packet traversal are minimal. Furthermore,
optimal values for the percentage of empty space and the bonus
multiplier are scene-dependent and even viewpoint-dependent.

The kD-tree builder performs full clipping of primitives during
tree construction [11]. This has a considerable effect on tree qual-
ity: The fact that a primitive’s bounding box intersects a node does
not guarantee that the primitive itself intersects the node.

The kD-tree can be visualized in real-time by representing the
number of traversal steps by a color. This is shown in Figure 2. This
visualization is easy to implement and provides a tool to inspect the
results of the kD-tree builder.

A multi-threaded version of the kD-tree builder is also imple-
mented. For this, a fixed number of construction threads is pre-
pared. The threads form a chain: Each thread can activate the next,
except for the last thread in the chain. Tree construction is now
started by feeding the root node to the first thread. As soon as an
optimal split plane is found, the construction thread activates the
next one, and assigns the child containing the largest amount of
primitives to it. The thread that spawned the next one proceeds
with the smaller child. The new thread gets the largest job, because
it may in turn spawn another construction thread, while the original
one cannot do this. Construction is complete when all threads have
signaled the calling thread. This process is illustrated in Figure 4.
In practice, this scheme is faster than single-threaded construction,
but not much: The first split takes most time, and this work is done
by a single thread. After that, it is unlikely that all threads finish at
the same time; several will be done while threads further down the
chain are still finishing their jobs.

Figure 4: Scheduling threads for parallel kD-tree construction.

Using the multi-threaded version, real-time construction (a full
rebuild per frame) is possible for a small amount of triangles. Other
approaches exist that can rebuild larger scenes by approximating
the surface area heuristic [28]. These approaches typically lead to
lower quality kD-trees: E.g., Shevtsov et al. report a 30% perfor-
mance degradation compared to an offline constructed high-quality
kD-tree [27]. The main problem, however, is that construction time
still depends on the overall scene size, instead of the number of dy-
namic triangles: Rebuilding the entire scene because of a simple

moving actor seems like a waste. Processing static and dynamic
geometry separately removes this dependency.

3.1.2 Bounding Interval Hierarchy

In 2006, an alternative acceleration structure for ray tracing dy-
namic scenes was presented by Wächter and Keller: The Bounding
Interval Hierarchy (BIH, [29]). Around the same time, a similar
structure was proposed by Woop et al. (the B-KD tree, [35]). The
main benefit of these algorithms is the fast build time: Where a kD-
tree for∼200k triangles typically takes seconds, a BIH for the same
scene is built in a fraction of a second. B-KD trees are not rebuild,
but updated; this is a rapid process as well. The BIH construction
can be parallelized in the same manner as the kD-tree (with the
same restrictions); that way, even for moderately large scenes the
structure can be rebuild each frame. The main drawback of the BIH
and B-KD tree is that ray traversal is not as fast as using the kD-
tree; on average the difference is 20%, but for architectural scenes,
the difference is larger (up to 50%). Since most games use large
amounts of static architectural geometry, using a BIH or a B-KD
tree as the core acceleration structure does not seem optimal.

For this reason, Arauna is using two acceleration structures for
tracing rays: A static kD-tree is used for static geometry, while the
BIH is used for dynamic geometry. This idea was introduced by
Parker et al., who keep dynamic primitives outside the accelera-
tion structure, and intersect these separately [18]. Since dynamic
geometry in a game typically consists of player and enemy charac-
ters, the BIH is a perfect match. The consequence of having two
acceleration structures is however that each ray now has to traverse
both. This may seem inefficient at first: E.g., for a scene consist-
ing of 2000 triangles, the average number of traversal steps is 11.
Where half of the triangles stored in a second tree, the number of
traversal steps needed to traverse both steps is 20. In practice how-
ever, most rays will miss the primitives in the BIH, since dynamic
geometry typically covers only a small portion of the screen. These
rays will traverse a few empty nodes and then terminate; the time
this takes proves to be negligible. More importantly: The time it
takes to handle changes in the geometry now depends only on the
extend of these changes, rather than the overall complexity of the
scene.

3.1.3 Tree Traversal

Once a high-quality acceleration structure is constructed, the per-
formance of a real-time ray tracer mainly depends on efficient
traversal of this structure. As shown by Wald, this process can be
greatly sped up by traversing several rays at once [30]. This was
later improved by using larger ray packets, or frustums (MLRTA,
[21]). The effectiveness of packet traversal depends greatly on the
coherence of the rays.

Arauna implements both standard packet traversal and frustum
traversal. Frustum traversal requires a common ray origin, and is
therefore suitable for primary rays and shadow rays (when traced
from a point light source). For other secondary rays, a common
origin does not exist, and so regular packet tracing is used instead.

3.2 Realtime Shading

In a real-time ray tracer, shading can easily become the perfor-
mance bottleneck (Reshetov et al. [21, p.1], Wald et al. [31, p.28]),
especially if more than one light source is present in the scene. Us-
ing approximation and low-level optimization, the impact of shad-
ing can be reduced. This allows the visual artists to use a complex
(although fixed) shading model, that includes texture filtering and
normal mapping, without sacrificing performance: On average, the
shading model uses less time than ray traversal, even when many
light sources are used.

a) b) c)

Figure 5: Augmenting realtime ray tracing by a) volumetric fog and b) light particles, whose visibility is determined by ray queries and c) neon
glow effect using HDR bloom.

3.2.1 Approximating Quadratic Fall-Off
A game typically requires many lights to define the atmosphere in
a level. To reduce the impact of a large number of light sources on
the frame rate, Arauna uses a simplified lighting model, inspired by
Schlick’s approximation of the Phong lighting model [25]. Figure 6
shows the graphs for quadratic fall-off (solid green) and various
approximations. Note how quadratic fall-off has an infinite sphere
of influence, whereas the three approximations have a finite range.
Figure 7 shows the shape of the light spots.

Figure 6: Various lighting models. Dotted green: linear fall-off; blue:
cosine + linear fall-off; dotted red: Schlick + linear fall-off; solid green:
Quadratic fall-off (for reference).

a) b) c)

Figure 7: Light spot shapes: a) Quadratic fall-off. b) Cosine + linear
fall-off. c) Schlick + linear fall-off.

Both the cosine and the Schlick model approximate the original
shape well enough, and allow us to quickly discard lights that are
too far away. The Schlick model is used in the ray tracer, since it is
computationally far less expensive than the cosine model.

3.2.2 Light Tree
Once the sphere of influence for light sources is limited to a specific
radius, the number of lights that affect a point in the scene is lim-
ited (Figure 8). Determining the set of lights that affects a point can

still become a bottleneck, however, since this requires calculating
the distance to each light. For hundreds of lights, this is imprac-
tical. For this reason, a bounding volume hierarchy (BVH, [22])
is used for the lights in the scene. The BVH is constructed once
per frame, so that the positions of all lights can be updated each
frame. The BVH is constructed in a bottom-up fashion: Pairs of
lights are grouped in an enclosing sphere, until the top level of the
BVH is reached, which is a single sphere, containing all the light
sources in the scene. The light sources that affect an intersection
point can now be quickly determined by traversing the BVH. Using
a BVH instead of a kD-tree (as done in [26]) solved problems with
the subdivision heuristic: Sometimes, lights overlap significantly,
in which case it is hard to find a good split plane position. Also, the
box shape of kD-tree nodes does not match the ’shape’ of a light
well, which leads to considerable overhead for points that will not
be lit by a light, yet are in a leaf node containing that light. BVH
nodes by nature enclose the light volumes perfectly.

Figure 8: Overlapping lights. The bottom-right walls are lit by the blue
light. The structure in the middle is lit by the white light and the red
light.

3.2.3 Fog
Several other modifications have been made to the ray tracer to
make it more suitable for games. The students added a layer of
volumetric fog (Figure 5a): At the end of the shading stage, rays
are intersected with a single horizontal plane (the surface of the fog
volume). Based on the position of the intersection point along the
ray and the position of the ray origin (above or beneath the fog sur-

face), the length of the ray segment that travels the fog volume is
calculated. Finally, Beer’s law is applied, taking into account fog
color and density.

dist1 = MAX(0, foglevel - rayorigin.y);
dist2 = MAX(0, foglevel - intersection.y);
length = dist1 / raydir.y - dist2 / raydir.y;
float fog = MIN(1, length * fogdensity);
raycolor = fog * fogcolor + (1-fog) * raycolor;

The fog layer is a reasonable approximation, adds a lot of atmo-
sphere to a game scene, and in addition reduces aliasing.

3.2.4 Texture Filtering and Normal Mapping

Texture maps are sampled using a bilinear filter, which is a vast
improvement over point sampling. Modern GPUs use far more ad-
vanced filters, but these put a heavy strain on the available band-
width. Besides a texture, materials can also use a (tangent space)
normal map (see Section 3.3.2).

3.2.5 Light-Particle Effects

Particles are rendered in the game by treating them as points. For
these points, visibility is determined using a single ray between the
camera and the particle position. Visible particles are then drawn
using a 2D sprite. This only works for points, but in our game,
it is quite effective. Particles are used in the game for particle ef-
fects such as fountains and fire (see for example Figure 5b), and to
visualize the position of light sources.

3.2.6 HDR Effects and Neon Glow

The ray tracer operates on floating point color, and converts this
to integer ARGB (32-bit) as a final conversion. On systems that
support 128-bit render targets, this conversion can be omitted: The
final conversion is then performed by the GPU (which is faster), and
postprocessing pixelshaders can operate on the original unclamped
color values. In the student project, this is used for HDR glow to
emphasize bright areas. This is in turn used to render neon glow:
By painting areas of textures using overbright colors (color compo-
nents exceeding 1), these areas will emit an artificial glow.

3.3 Going for Performance

In this project, a relatively large amount of time was spent on low-
level optimizations. Concentrating on performance is quite com-
mon for (parts of) game software, but in this case, it is especially
relevant: If the goal is to match GPU performance and image fi-
delity, the ray tracing algorithm is still too demanding for mod-
ern high end consumer hardware. Hurley [10] estimated that 450
’ray segments’ (i.e., traversal steps; he assumes an average of seg-
ments per ray) are needed to make real-time ray tracing ’interest-
ing’. However, to make ray tracing a viable alternative to rasteri-
zation, something closer to 300M rays/s and 20 segments per ray
is needed to make the ray tracer a viable alternative to rasteriza-
tion (Figure 9): Gamers are used to (at least) 1280x800 pixels and
30 frames per second; 10 rays per pixel are needed to allow for
shadow rays and other secondary rays.

On current high-end hardware, this performance level cannot
be achieved. An eight-core machine running at 1.86Ghz delivers
real-time performance (30fps @ 800x600) for moderately complex
scenes (∼80k triangles), some dynamic triangles (∼5k) and a large
amount of lights (see Section 3.2.2). To achieve this, the ray tracer
has been designed with performance in mind on a high level. The
previous section described the decisions in this regard. Besides that,
low-level optimizations have a significant impact.

Figure 9: Given a performance of 300M rays/s, 30 frames per sec-
ond at 1280× 800 pixels leave 10 rays per pixel for anti-aliasing and
secondary effects.

3.3.1 Parallelism
Modern processor architectures require code that is highly paral-
lel, both on a high level (thread-level parallelism) and on a low
level (instruction-level parallelism). Arauna exploits both. On a
high level, rendering is evenly distributed over a number of render-
ing threads. To divide the work evenly, the screen is subdivided
in 32x32 pixel tiles: Each tile is a ’task’, an atomic workload for
a rendering thread. During rendering, the rendering threads take
tasks from the task stack and execute them, until no tasks remain.

A few practical notes about this process:

• The number of rendering threads is equal to the number of
available cores, and each rendering thread is tied to a single
core.

• During rendering, when a thread needs a new task, it checks
the stack pointer, retrieves the index of a waiting task using an
interlocked decrement of the stack pointer (this is hardware
supported), checks if the returned task number is valid, and
executes the task. Using this simple scheme, no operating-
system-assisted synchronization is needed during actual ren-
dering, which considerably reduces threading overhead.

• When no more tasks are available, the rendering thread signals
the main thread, and goes to sleep. The main thread waits for
all rendering threads to complete, before it returns control to
the host application.

There is one point where this process may not optimally use all
available cores: While rendering the last task, one rendering thread
will at some point be the only active rendering thread. If the last
32x32 pixel tile happens to be a very expensive tile, a number of
cores will be idle for quite some time. In a typical game scene,
these cases are rare, since deep recursion is generally prevented by
careful object placement. At a 1024x768 screen resolution, it is
therefore unlikely that the time to render the most expensive tile
will be a significant portion of the overall rendering time.

3.3.2 SIMD
Besides thread level parallelism, instruction level parallelism is
used to increase application performance. In Arauna, SIMD is used
for ray setup (especially normalization), ray (packet) traversal, ray
(packet) / triangle intersection, shading, and converting the final
pixels to 32bit ARGB. Some of these are well documented, espe-
cially SIMD packet traversal and triangle intersection. Arauna uses
a fixed shading path, and is therefore able to effectively use SIMD
code for shading as well.

The shading path consists of the following steps:

1. Texture fetch with bilinear filtering,

2. Normal map lookup with bilinear filtering,

3. Transforming normal from normal map into object space,

4. Lighting model: Ambient, diffuse, specular with linear falloff,

5. A single fog volume, and

6. Conversion to 32bit ARGB,

where the final step is only executed for primary rays in order to
display the final result and can be omitted if the render target is
128-bit (32-bit floating point per component).

To reduce the impact of cache misses, materials that have both a
texture and a normal map store the image data in an interleaved
fashion: Each texel is followed by the corresponding (tangent
space) normal. A texel/normal pair is now exactly 32 bytes, and
thus fits in a single L1 cache line; fetching the texel ensures that the
normal data can be accessed without delay. The result is that nor-
mal mapping is fast enough to allow the artists to use it liberally.
The drawback of this approach is that the normal map must have
the same resolution as the texture, and that materials with the same
texture but a different (or no) normal map cannot share texture data.

Texels and normals are fetched for four rays at a time. The bi-
linear filter requires four texels per ray; a total of 16 texels is thus
needed. In case of oversampling or limited undersampling (i.e., a
sampling rate >25%), several of these are actually the same texel,
further reducing cache misses. Below that point, each ray will sam-
ple four points that are not shared with adjacent rays. The fetched
texels (in ARGB format, 128-bit) are then converted to RRRR,
GGGG, BBBB (alpha is discarded), so that the layout of the ’color
component quads’ matches other data, which is stored for four rays
at a time.

Note that undersampling and oversampling only applies to tex-
ture sampling: The ray tracer will always trace exactly one primary
ray per screen pixel.

3.3.3 SSE Tricks
When working with four rays at a time, SIMD instructions can be
used to speed up several common but expensive operations, such as
the normalization of vectors. One of the SSE2 instructions that is
provided specifically for this task is the mm rsqrt ps instruction:
Using a hardware look-up table, a reciprocal square root is calcu-
lated for 4 numbers in a few processor cycles. The drawback of this
instruction is its accuracy: The look-up table supports only 22 bits
of accuracy. A more accurate result can be obtained using a single
Newton-Raphson iteration.

__m128 fastrsqrt(const __m128 v)
{
const __m128 nr = _mm_rsqrt_ps(v);
const __m128 muls = _mm_mul_ps(_mm_mul_ps(v, nr), nr);
return _mm_mul_ps(_mm_mul_ps(_half, nr),

_mm_sub_ps(_three, muls));
}

The three is the vector (3,3,3,3) and half is the vector
(0.5,0.5,0.5,0.5). For calculating the reciprocal of a square root,
this function is 8.2 times faster than a regular 1/sqrtf(x) scalar
version.

Similarly, the reciprocal of four values of a vector can be calcu-
lated faster:

__m128 safercp(const __m128 v)
{
const __m128 nr = _mm_rcp_ps(v);
const __m128 muls = _mm_mul_ps(_mm_mul_ps(nr, nr), v);
return _mm_sub_ps(_mm_add_ps(nr, nr),
_mm_andnot_ps(_mm_cmpeq_ps(v, _zero), muls));
}

The vector zero is (0,0,0,0) and the masking operation in the
last line sets results of a division by zero to 0. For calculating re-
ciprocals, this function is 4.94 times faster than a scalar reciprocal,
and has a maximum error of 1.4e10−7. Just using the mm rcp ps
intrinsic is even faster, but this has a maximum error of 0.3e10−4.

3.3.4 Other Low-level Optimizations
Besides parallelism and platform-specific SIMD optimizations, a
large number of low-level optimizations influence the quality of the
code that is generated from the C++ source files.

Inlining of functions in general improves performance. In many
cases, the compiler will already inline suitable functions; in
some other cases, the compiler will ignore the inline key-
word, as it is only a hint. Especially some larger functions
that are merely separated from the calling function to increase
readability may end up as a function, with the associated func-
tion call overhead, even if the user requests such a function to
be inlined. Several compilers support the forceinline
directive; using this guarantees that the function is inlined as
requested.

Expanding variables to vectors: Since many calculations are
performed on four rays at a time, many scalar values need
to be expanded to a vector to be used in the calculations. By
storing data like the position and radius of a light source in
the expanded form as well as the original scalar, these calcu-
lations are greatly sped up. For the same reason, light and fog
color values are stored as RRRR, GGGG, BBBB.

Memory management: Besides aligning objects to cache lines,
the memory manager is used to efficiently handle allocation
of small objects. These objects are always allocated in groups,
so that similar objects are grouped in memory. The memory
manager uses simple arrays for objects that will not be recy-
cled (e.g., nodes for the static kD-tree), and linked lists for
objects that can be recycled (e.g., nodes for the BIH). Using
the linked list, allocation is now simply a matter of getting
the first element from a linked list; to recycle an object, it is
placed back at the start of the list.

Cache line alignment: All classes and structures are padded with
dummy data to make their size a multiple of 32. Allocation of
such objects is always done through a custom memory man-
ager, which ensures that the address of each object is a multi-
ple of 32.

Using the const keyword is an important hint to the compiler
about the intended use of a variable. Declaring all suitable
variables and functions ’const’ can improve the performance
of an already optimized ray tracer by 10

Regarding the const keyword: An application that has been mod-
ified to maximize the number of constant variables will perform
better, even when the const keyword is removed afterwards. This
is caused by the fact that the modifications that have to be made
already make the code ’easier’ on the compiler. One example of
this:

float squared = x * x;
squared += y * y;
float distance = sqrt(squared);
distance = 1.0f / dist;

This calculates the reciprocal of the length of vector (x,y). Usu-
ally the variable distance will not be changed after this, so it
can be declared constant. All other variables can also be constant,
if some intermediate variables are used:

Table 1: Arauna performance in MRays/s and milliseconds on a dual quad core Xeon system running at 1.86Ghz.

Scene Triangles Lights Shading MRays/s min. MRays/s max. Time max Time min
Teapots 11040 1 basic 77.3 115.2 26ms 18ms
Teapots 11040 1 full 55.7 96.3 37ms 22ms
Sponza 67324 1 basic 49.7 112.7 42ms 18ms
Sponza 67324 1 full 22.9 87.4 92ms 23ms
KA27 185060 2 basic 33.6 65.9 62ms 31ms
KA27 185060 2 full 31.7 55.2 99ms 57ms

Packard 362900 2 basic 31.8 67.4 68ms 30ms
Packard 362900 2 full 23.8 50.5 84ms 54ms

const float sqred_x = x * x;
const float sqred_y = y * y;
const float dist = sqrt(sqred_x + sqred_y);
const float distance = 1.0f / dist;

Now the ’constness’ of each variable can easily be detected by
the compiler, even if we do not explicitly state the const keyword.

4 STATISTICS

The ray tracer was tested for several scenes with varying numbers
of triangles and shading complexity. The results are listed in Ta-
ble 1. About the scenes used: Sponza is a moderately complex
architectural model, with complex shading: Almost all materials
use a detailed texture and a normal map. The ’teapots’ scene is a
simple scene, with basic materials. KA27 is a detailed model of a
Russian helicopter. Packard, finally, is a highly detailed model of a
car, but again with basic materials.

The tests where run on a dual-processor Xeon machine (in total
8 cores), running at 1.86Ghz, at a screen resolution of 1024x1024
pixels. A peak performance of 115 MRays/s is reached for a simple
scene, with basic lighting.

As expected, ray tracing performance is rather insensitive to
scene complexity. The difference between Sponza and Packard is
slightly misleading in this respect: Sponza uses much more time on
shading, so the difference in ray traversal time alone is larger. The
shading model itself takes between 10% and 30% of the overall
render time, depending on material complexity: Texturing is costly.
Not mentioned in this table is the overhead of normal mapping: In
the Sponza scene test, disabling normal mapping decreases shading
time by about 15%.

Adding 2500 dynamic triangles to the Sponza scene increases
the frame time by 4ms, where 1 millisecond is used to build the
BIH, 2 milliseconds are due to the visible dynamic triangles, and
the overhead of checking all rays against the BIH is about 1 mil-
lisecond. Increasing the number of dynamic triangles confirms this:
For 10k dynamic triangles, BIH construction time is about 4ms, and
the overall impact still largely depends on the number of visible dy-
namic triangles.

Table 2: Multi-threading scalability on a 1.86Ghz system.

Cores Render time (ms) MRays/s x 1 Core
1 359.2 5.85 1.00
2 185.2 11.36 1.94
4 96.4 21.8 3.73
6 68.9 30.7 5.25
8 55.9 37.7 6.44

The scalability of rendering using many cores has been tested on
the same system. The results are shown in Table 2: These numbers
indicate that beyond eight cores, scalability will become a problem.

5 FUTURE PLANS

The Arauna ray tracer now provides sufficient performance for
games on an 8-core PC. However, a lot of work remains to be done.
The intention is to keep focusing on performance, but besides that,
there is now room to increase image fidelity. The most obvious
way to do this is by improving the shading model: It is especially
attractive to explore the possibilities of global illumination, and ap-
proximations such as ambient occlusion [37].

Figure 10: Hierarchical grid used for adaptive ambient occlusion
sampling. Red dots form the top-level of the hierarchy; green and
blue dots are subsequent subdivisions.

5.1 Ambient Occlusion
A first attempt at an efficient ambient occlusion scheme has been
made: For this, a hierarchical version of the discontinuity buffer
[13, 33] is implemented. For a 32x32 tile, ambient occlusion sam-
ples are first taken for a limited number of points. The grid that is
used for this is shown in Figure 10: The red dots form the top-level
of the hierarchy (5x5 samples). The pixels between dots identical
color are shaded by bilinear interpolation of the ambient occlusion
values for the red dots, unless a discontinuity is detected:

• The ambient occlusion values for 4 grid points differ signifi-
cantly, or

• the intersection points of the primary rays for the 4 grid points
are not planar, or

• the normals of the geometry at the 4 grid points differ signifi-
cantly.

Each of these three conditions can be made more or less strict; this
way, a balance between speed and accuracy is chosen. In case of
a discontinuity, the top-level grid is subdivided, and the process
is repeated for the green dots (9x9 samples), the blue dots (16x16

a) b) c)

Figure 11: Ambient occlusion with a hierarchical discontinuity buffer: a) Basic shading, b) sampling points found, and c) the final result shaded
in realtime.

samples) and finally the black dots, in which case interpolation is
not used at all. Omitting the last subdivision is acceptable for most
applications; this reduces the maximum sampling of the ambient
occlusion to 2x2 pixels, with interpolation.

Note that the subdivided tiles are not equally sized. This is a
consequence of the otherwise convenient tile size (32x32): Since
samples at the edges are needed, 33x33 would have been needed
for a regular subdivision. This irregularity does not lead to visible
artifacts in the final result; it does however complicate the imple-
mentation.

The outlined approach effectively finds discontinuities in the ge-
ometry that is detected by the primary rays (Figure 11b), and re-
duces the number of ambient occlusion samples significantly. In
areas where no discontinuities are detected, interpolation results in
a good approximation of the low-frequent ambient occlusion (Fig-
ure 11c). Further performance improvements are achieved by lim-
iting the maximum range of the ambient occlusion rays. This way,
ambient occlusion quality and speed can be balanced.

As mentioned, The discontinuity buffer operates on the 32x32
pixel tiles that each rendering thread renders. Because it is limited
to the pixels of a tile, it can be part of the task executed by the
rendering threads: Unlike the original discontinuity buffer, it thus
runs in parallel if multiple cores are available. The disadvantage
is that samples at the edges of the tile are adjacent to samples on
neighboring tiles. The samples are thus not evenly distributed over
the screen.

The same buffer has also been applied to soft shadows. This does
not work well: Area lights cause high frequency changes in illumi-
nation near occluders, and the grid will often miss these, leading to
objectionable artifacts.

So far, the results of this approach has been somewhat disap-
pointing. This is related to some key issues in real-time ray tracing:
The first is the problem of divergent rays. The ambient occlusion
rays are extremely divergent by nature, as they are uniformly dis-
tributed over a sphere. This makes ray packet traversal impracti-
cal, but even single ray traversal suffers: Since each ray traverses
vastly different regions of the scene, frequent cache misses reduce
its performance. The same problems occur with e.g. reflections
from normal mapped or curved surfaces. The other problem is the
near-impossibility of combining screen space techniques with re-
cursive ray tracing. While the discontinuity buffer can effectively
reduce the number of ambient occlusion samples, it uses the results
of primary rays for this; this is not possible when scenery is seen
indirectly. The use of so called ’deep buffers’ may solve this prob-
lem: In this case, a discontinuity buffer per recursion level could be
used.

5.2 Incoherent Secondary Rays

As mentioned in Section 2, demonstrating the potential of ray trac-
ing is an important goal. Much of this potential is coupled to sec-
ondary effects. Of these, only shadows can be efficiently handled
using ray packet tracing. Finding ways to improve the performance
of reflection and refraction is therefore important.

One approach that looks interesting is to intersect each ray with
four triangles at a time, instead of the commonly used method of
intersection four rays with a single triangle. Rays may still tra-
verse in packets for frusta, but single rays will now at least exploit
instruction level parallelism for triangle intersection. In their Mas-
ter’s thesis, Bonnedal and Pettersson state an overall speedup of 1.3
to 2 compared to single ray traversal / triangle intersection [4]. This
may require significant changes to kD-tree construction: Leaves
should contain (a multiple of) four primitives, and the average ex-
pected cost of triangle intersection should be reduced, leading to
smaller trees and larger leaves.

6 OPEN ISSUES

There are several areas that need more research:

1. Divergent rays: The tremendous speed-up that is obtained by
bundling rays in packets appears to primarily benefit primary
rays and shadow rays. Finding coherence in a ’ray soup’ is
needed to speed up all rays.

2. Reducing the number of rays: Several features that consider-
ably affect image quality, such as soft shadows, global illumi-
nation, and anti-aliasing require many rays. Finding efficient
schemes to reduce the number of rays will let ray traced games
use more realistic graphics.

3. The transition of rasterization to ray tracing: Finding ways
to gradually introduce ray tracing in games is needed to ’ed-
ucate’ both gamers and game developers, without requiring
large investments in ray tracing hardware.

4. An efficient programmable shading model: The Arauna shad-
ing model is fixed and limited, while the ray tracing algorithm
in principle offers an elegant way to support complex effects
that involve many secondary rays.

Many of these are typical research tasks; others (such as the
programmable shaders) simply require an efficient implementation,
making optimal use of the available hardware. Advancing in these
areas would greatly benefit from a closer relation between academic
researchers and game developers, both in a formal setting and in
more informal ways.

ACKNOWLEDGEMENTS

Many of the techniques applied in the Arauna ray tracer have origi-
nated from or discussed on the ompf.org forum. Detailed low-level
optimization tips where provided by Thierry Berger-Perrin, web-
master of the ompf forum (http://www.ompf.com/forum).

Several game-specific features of the ray tracer are the idea of
NHTV/IGAD students: The volumetric fog and the BVH for lights
where implemented by Rutger Janssen; texture glow was proposed
by Jan Pijpers. The GL1/RTRT project team consists of the fol-
lowing students: Mike van Mourik (lead), Erik Verboom (design),
Frans Karel Kasper (coding and design), Rutger Janssen and Wilco
Schroo (engine), Jan Pijpers, Ramon Plaisier and Titus Lunter
(modelling), Pablo van den Homberg (props) and our special team
member: Octopussy, our friendly 8-core.

The author wishes to thank Carsten Wächter, Alexander Keller
and Per Christensen for proofreading and useful comments.

REFERENCES

[1] Abaddon. Chrome Real-time Ray Tracing Demo. Presentation at the
Assembly 95 demo party, Helsinki, Finland, 1995.

[2] C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich. Ray Tracing on
the CELL Processor. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, pages 15–23, 2006.

[3] T. Berger-Perrin. The Sphereflake, in 100 lines of c code. Website:
http://ompf.org/ray/sphereflake/, with link to source code, 2005.

[4] R. Bonnedal and M. Pettersson. Master thesis: SIMD Accelerated
Ray Tracing, 2002.

[5] Exceed. Heaven seven. Presentation at the Mekka and Symposium
demo party, 2000.

[6] Federation Against Nature. RealStorm Benchmark 2004. Website:
http://www.realstorm.com.

[7] Futuremark Corporation. 3dmark06. Website:
http://www.futuremark.com.

[8] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierar-
chies for Ray Tracing. IEEE Computer Graphics and Applications,
7(5):14–20, May 1987.

[9] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech
Technical University, Praha, Czech Republic, 2001.

[10] J. Hurley. Ray Tracing goes Mainstream. Intel Technology Journal,
9(2), 2005.

[11] J. Hurley, R. Kapustin, A. Reshetov, and A. Soupikov. Fast Ray Trac-
ing for Modern General Purpose CPU. In Proceedings of Graphicon,
pages 255–261, 2002.

[12] ID Software. Quake 2. Website: http://www.idsoftware.com, 1997.
[13] A. Keller. Quasi-Monte Carlo Methods for Photorealistic Image Syn-

thesis. Ph.D. thesis, Shaker Verlag Aachen, 1998.
[14] A. Keller and C. Wächter. To Trace or Not To Trace, That is the

Question. Presentation for the Breakpoint 2005 demo party seminar,
2005.

[15] G. W. Larson. The Holodeck: A Parallel Ray-caching Rendering Sys-
tem. Proceedings of the Second Eurographics Workshop on Parallel
Graphics and Visualisation, pages 17–30, Sept. 1998.

[16] J. MacDonald and K. Booth. Heuristics for Ray Tracing using Space
Subdivision. The Visual Computer, 6(3):153–166, June 1990.

[17] J. A. Oudshoorn. Ray Tracing as the Future of Computer Games,
1999.

[18] S. Parker, W. Martin, P. Sloan, P. Shirley, B. Smits, and C. Hansen.
Interactive Ray Tracing. In Symposium on Interactive 3D Graphics,
pages 119–126. ACM SIGGRAPH, 1999.

[19] D. Pohl. Quake 3 Ray Traced. Website: http://graphics.cs.uni-
sb.de/ sidapohl/egoshooter/, 2004.

[20] D. Pohl. Quake 4 Ray Traced. Website: http://www.q4rt.de, 2007.
[21] A. Reshetov, A. Soupikov, and J. Hurley. Multi-Level Ray Tracing

Algorithm. ACM Transactions on Graphics (ACM SIGGRAPH 2005
Conference Proceedings), 24(3):1176–1185, 2005.

[22] S. M. Rubin and T. Whitted. A 3-Dimensional Representation for Fast
Rendering of Complex Scenes. Computer Graphics (Proceedings of
SIGGRAPH ’80), 14(3):110–116, 1980.

[23] SaarCOR. The Openrt Real-time Ray Tracing Project. Website:
http://www.openrt.de.

[24] V. Scheib, T. Engell-Nielsen, S. Lehtinen, E. Haines, and P. Taylor.
The Demo Scene. In Conference Abstracts and Applications (SIG-
GRAPH ’02), pages 96–97, New York, NY, USA, 2002. ACM Press.

[25] C. Schlick. A Customizable Reflectance Model for Everyday Render-
ing. In Rendering Techniques ’93 (Proceedings of the Fourth Euro-
graphics Workshop on Rendering), pages 73–83, Paris, France, June
1993.

[26] J. Schmittler, D. Pohl, T. Dahmen, C. Vogelgsang, and P. Slusallek.
Realtime Ray Tracing for Current and Future Games. In P. Dadam and
M. Reichert, editors, 34. Jahrestagung der Gesellschaft für Informatik,
volume 50 of LNI, pages 149–153. GI, 2004.

[27] M. Shevtsov, A. Soupikov, and A. Kapustin. Highly Parallel Fast KD-
tree Construction for Interactive Ray Tracing of Dynamic Scenes. In
Proceedings of Eurographics, volume 26, page to appear, 2007.

[28] G. S. W. Hunt, W.R. Mark. Fast kd-tree Construction with an Adap-
tive Error-Bounded Heuristic. IEEE Symposium on Interactive Ray
Tracing, pages 81–88, 2006.

[29] C. Wächter and A. Keller. Instant Ray Tracing: The Bounding Inter-
val Hierarchy. In T. Akenine-Möller and W. Heidrich, editors, Ren-
dering Techniques ’06 (Proceedings of 17th Eurographics Symposium
on Rendering), pages 139–149, 2006.

[30] I. Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[31] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies. ACM Transactions on
Graphics (SIGGRAPH 2007 Conference Proceedings), 26(1):6, 2007.

[32] I. Wald and V. Havran. On building fast kD-trees for Ray Tracing, and
on doing that in O(N log N). Proceedings of the 2006 IEEE Sympo-
sium on Interactive Ray Tracing, pages 61–69, 2006.

[33] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek. Interac-
tive Global Illumination using Fast Ray Tracing. In P. Debevec and
S. Gibson, editors, Rendering Techniques 2002 (Proceedings of the
13th Eurographics Workshop on Rendering), pages 15–24, 2002.

[34] B. Walter, G. Drettakis, and S. Parker. Interactive Rendering using
the Render Cache. In D. Lischinski and G. Larson, editors, Rendering
techniques ’99 (Proceedings of the 10th Eurographics Workshop on
Rendering), volume 10, pages 235–246, New York, NY, Jun 1999.
Springer-Verlag/Wien.

[35] S. Woop, G. Marmitt, and P. Slusallek. B-KD Trees for Hardware Ac-
celerated Ray Tracing of Dynamic Scenes. In Proceedings of Graph-
ics Hardware, pages 67–77, 2006.

[36] C. Worlds. Myst PC Game. Website: http://www.cyan.com, 1993.
[37] S. Zhukov, A. Iones, and G. Kronin. An Ambient Light Illumination

Model. In Rendering Techniques ’98 (Proceedings of the Eurograph-
ics Workshop on Rendering), pages 45–55, 1998.

Figure 12: More images taken from a game implemented on the Arauna real-time ray tracing platform.

