
R AY T R A C I N G I N R E A L - T I M E G A M E S

J. Bikker

R AY T R A C I N G I N R E A L - T I M E G A M E S

proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft;

op gezag van de Rector Magnificus prof.ir. K.Ch.A.M. Luyben;
voorzitter van het College van Promoties

in het openbaar te verdedigen op maandag 5 november om 12.30 uur
door

Jacobus BIKKER

geboren te Barendrecht

Dit proefschrift is goedgekeurd door de promotor:

Prof.dr.ir. F.W. Jansen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. F.W. Jansen, Technische Universiteit Delft, promotor
Prof.dr. E. Eisemann, Technische Universiteit Delft
Prof.dr. K.L.M. Bertels, Technische Universiteit Delft
Prof.dr. R.C. Veltkamp, Universiteit Utrecht
Prof.dr.ir. P. Dutré, Universiteit Leuven
Prof.Dr.-Ing. P. Slusallek, Universiteit Saarland
Dr.-Ing. I. Wald, Intel Corporation

The research described in this thesis was performed at the Academy of Digital
Entertainment of the NHTV University of Applied Sciences, Reduitlaan 41,
4814DC, Breda, The Netherlands.

ISBN 978-90-5335-595-4

And God said, Let there be light: and there was light.
And God saw the light, that it was good:

and God divided the light from the darkness.

Dedicated to the Author of Light.

A B S T R A C T

This thesis describes efficient rendering algorithms based on ray tracing, and the
application of these algorithms to real-time games. Compared to rasterization-
based approaches, rendering based on ray tracing allows elegant and correct
simulation of important global effects, such as shadows, reflections and refractions.
The price for these benefits is performance: ray tracing is compute-intensive. This
is true if we limit ourselves to direct lighting and specular light transport, but even
more so if we desire to include diffuse and glossy light transport. Achieving high
performance by making optimal use of system resources and validating results
in real-life scenarios are central themes in this thesis. We validate, combine and
extend existing work into several complete and well-optimized renderers. We
apply these to a number of games. We show that ray tracing leads to more realistic
graphics, efficient game production, and elegant rendering software. We show that
physically-based rendering will be feasible in real-time games within a few years.

S A M E N VAT T I N G

Deze thesis beschrijft efficiënte rendering algoritmes gebaseerd op ray tracing, en
de toepassing van deze algoritmes in games. Vergeleken met technieken gebaseerd
op rasterization stelt ray tracing ons in staat om op een elegante en correcte manier
belangrijke globale effecten te berekenen, zoals schaduwen, reflecties en refracties.
Ray tracing vergt echter veel rekenkracht. Dit geldt voor directe belichting en
perfecte reflectie, maar nog meer voor imperfecte en diffuse reflecties. Centrale
thema’s in deze thesis zijn het behalen van hoge performance door optimaal gebruik
te maken van systeembronnen, en het toepassen van resultaten in realistische
scenarios. Wij valideren en combineren bestaand werk en bouwen hierop voort.
De resulterende renderers worden toegepast in een aantal games. Wij laten zien
dat ray tracing leidt tot realistische beelden, efficiënte game productie, en elegante
rendering software. Rendering in games gebaseerd op simulatie van lichttransport
is haalbaar binnen enkele jaren.

vii

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publications:

J. Bikker and J. van Schijndel, The Brigade Renderer: a Path Tracer for Real-time
Games. 2012. Submitted to the International Journal of Game Technology.

J. Bikker, Improving Data Locality for Efficient In-Core Path Tracing. 2012. In:
Computer Graphics Forum, Eurographics Association.

J. Bikker and R. Reijerse, A Precalculated Pointset for Caching Shading Infor-
mation. 2009. In: EG 2009, Short Papers, Eurographics Association.

J. Bikker, Generic Ray Queries using kD-trees. 2008. In: Game Programming Gems
7. Charles River Media.

J. Bikker, Real-time Ray Tracing through the Eyes of a Game Developer. 2007.
In: RT ’07: Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing.
IEEE Computer Society.

D I S S E M I N AT I O N

The ideas presented in this thesis have been used in the following articles and
products:

Student game “It’s About Time”. N. Koopman, L. Brailescu, B. de Bree, D. Georgev,
T. Verhoeve, S. Verbeek, T. Boone, D. van Wijk, M. Jakobs, K. Ozcan, R. van
Kalmhout, J. van Schijndel and J. Bikker, 2012. ADE/IGAD, NHTV, Breda, The
Netherlands.

Student game “Reflect”. E. Aarts, S. Stroek, M. Pisanu, D. van Wijk, N. van Kaam,
A. van der Wijst, D. Shimanovski, S. Vink, J. Knoop, J. van Schijndel and J. Bikker,
2011. ADE/IGAD, NHTV, Breda, The Netherlands.

The Brigade Path Tracer. J. Bikker, J. van Schijndel and D. van Antwerpen, 2010-
2012.

ix

Student game “A Time of Light”. M. Peters, B. van de Wetering, W. van Balkom, J.
Zavadil, V. Vockel, I. Tomova, M. Goliszec and J. Bikker, 2010. ADE/IGAD, NHTV,
Breda, The Netherlands.

Student game “Cycle”. D. de Baets, G. van Houdt, I. Abrossimow, L. Lagidse,
N. Ruisch, R. van Duursen, S. Boskma, T. van der Ven and J. Bikker, 2009. ADE/I-
GAD, NHTV, Breda, The Netherlands.

Student game “Pirates on the Edge”. J. van Schijndel, R. de Bruijne, R. Ezen-
dam, M. van Es, R. van Halteren, C. de Heer, T. van Hoof, K. Baz, S. Dijks, P.
Kartner, F. Hoekstra, B. Schutze and J. Bikker, 2008. IGAD/NHTV, Breda, The
Netherlands.

Student game “Let there be Light”. K. Baz, M. van Es, T. Van Hoof, D. Hoek-
stra, B. Schutze, R. de Bruijne, R. Ezendam, Pim Kartner and J. Bikker, 2007.
IGAD/NHTV, Breda, The Netherlands.

Ray Tracing Theory and Implementation. J. Bikker, 2006. Seven articles on ray
tracing, published on www.flipcode.com and devmaster.net.

Student game “Outbound”. F. K. Kasper, R. Janssen, W. Schroo, M. van der Meide,
J. Pijpers, L. Groen, R. Dijkstra, R. de Boer, B. Arents, T. Lunter and J. Bikker, 2006.
ADE/IGAD, NHTV, Breda, The Netherlands.

Student game “Proximus Centauri”. M. van Mourik, R. Plaisier, T. Lunter, J. Pijpers,
P. van den Hombergh, R. Janssen, E. Verboom, W. Schroo, F. K. Kasper and J. Bikker,
2006. ADE/IGAD, NHTV, Breda, The Netherlands.

The Arauna Real-time Ray Tracer, J. Bikker, 2004-2010.

Interactive Ray Tracing. J. Bikker, 2006. Intel Software Network.

x

A C K N O W L E D G M E N T S

The research described in this thesis was carried out over the course of about eleven
years. It started somewhere in 2001, with the discovery of the wonderful world
of real-time ray tracing, the challenge I read in Ingo Wald’s work, and endless
conversations with Thierry Berger-Perrin, which led to the development of the
Arauna ray tracer, and the start of the ompf forum. It accelerated when I was
invited by Alexander Keller and Carsten Wächter to speak at the RT’07 conference,
which in turn led to an incredible summer at Intel in 2008. Many thanks to Jim
Hurley, Bill Mark, Ingo Wald, Alexander Reshetov, Ram Nalla, Daniel Pohl, Carsten
Benthin and Sven Woop for having me there.

Back in the Netherlands, a guest lecture for Rafaël Bidarra brought me into
contact with Professor Erik Jansen, who helped me turn my practical work into
scientific form, and allowed me to work with two excellent master students. Roel
Reijerse implemented the lightcuts algorithm described in chapter 4. Dietger van
Antwerpen worked on the RayGrid algorithm and the CUDA implementation of
the path tracer kernels, which influenced greatly the contents of chapters 5 and 6.

This research was carried out in the environment of the IGAD program of the
NHTV University of Applied Sciences in Breda. Many programming and visual
art students were involved: most of them in one of the GameLab projects, some of
them got a little deeper involved. Many thanks to Jeroen van Schijndel for being my
research assistant. Thanks to Frans Karel Kasper for representing the ’Arauna team’
at the SIGGRAPH’09 conference. Also thanks to all the students and colleagues
that patiently heard me out (or not) when I talked too much about ray tracing.
IGAD is an incredible environment, and I am proud to be part of it.

Also many thanks to the OTOY people: Alissa Grainger, Jules Urbach and Charlie
Wallace, for using Brigade in their cloud rendering products.

Thanks to Samuel Lapère for creating tons of demos based on the Kajiya demo
and Brigade source code.

Several people provided advice during this research. Alexander Keller got me
through writing my first paper. Ingo Wald provided feedback on early versions of
this thesis.

This thesis and the research described in it leans heavily on the creative labor of
a large number of talented individuals:

The Modern Room scene that was used in several chapters of this thesis was
modeled by students of the IGAD program. The Sponza Atrium and Sibenik
Cathedral were modeled by Marko Dabrovic. We also used a version that was
heavily modified by Crytek. The Bugback Toad model was modeled by Son Kim.
The Lucy Statue and the Stanford Bunny were originally obtained from the Stanford
3D Scanning Repository. The Escher scene was modeled by Simen Stroek.

xi

The games that where produced using Arauna were developed by students of
the IGAD program:

“Proximus Centauri” was developed by Mike van Mourik, Ramon Plaisier, Titus
Lunter, Jan Pijpers, Pablo van den Hombergh, Rutger Janssen, Erik Verboom, Wilco
Schroo and Frans Karel Kasper.

“Outbound” was developed by Frans Karel Kasper, Rutger Janssen, Wilco Schroo,
Matthijs van der Meide, Jan Pijpers, Luke Groen, Rients Dijkstra, Ronald de Boer,
Benny Arents and Titus Lunter.

“Let there be Light” was developed by Karim Baz, Maikel van Es, Trevor van
Hoof, Dimitrie Hoekstra, Bodo Schutze, Rick de Bruijne, Roel Ezendam and Pim
Kartner.

“Pirates on the Edge” was developed by Jeroen van Schijndel, Rick de Bruijne,
Roel Ezendam, Mikel van Es, Richel van Halteren, Carlo de Heer, Trevor van Hoof,
Karim Baz, Sietse Dijks, Pim Kartner, Freek Hoekstra and Bodo Schutze.

“Cycle” was developed by Dieter de Baets, Gabrian van Houdt, Ilja Abrossimow,
Lascha Lagidse, Nils Ruisch, Robert van Duursen, Sander Boskma and Tom van
der Ven.

“A Time of Light” was developed by Mark Peters, Bram van de Wetering, Wytze
van Balkom, Jan Zavadil, Valentin Vockel, Irina Tomova and Marc Goliszec.

Brigade was used for two games:
“Reflect” was developed by Simen Stroek, Marco Pisanu, Dave van Wijk, Elroy

Aarts, Nick van Kaam, Astrid van der Wijst, Dimitri Shimanovski, Stefan Vink,
Jordy Knoop and Jeroen van Schijndel.

“It’s About Time” was developed by Nick Koopman, Lavinia Brailescu, Bart de
Bree, Darin Georgev, Tom Verhoeve, Stan Verbeek, Thomas Boone, Dave van Wijk,
Martijn Jakobs, Keano Ozcan and Rick van Kalmhout.

Writing a thesis can be taxing for a family. Many thanks to Karin, Anne, Quinten
and Fieke for supporting me during isolated vacations and moody hours.

This research was funded in part by two Intel research grants.

xii

C O N T E N T S

1 introduction 1

1.1 Graphics in Games 2

1.2 Ray tracing versus Rasterization 3

1.3 Previous work 6

1.4 Problem Definition 7

1.5 Thesis Overview 7

2 preliminaries 9

2.1 A Brief Survey of Rendering Algorithms 9

2.1.1 The Rendering Equation 10

2.1.2 Rasterization-based Rendering 11

2.1.3 Ray Tracing 12

2.1.4 Physically-based Rendering 13

2.1.5 Monte-Carlo Integration 14

2.1.6 Russian Roulette 15

2.1.7 Path Tracing and Light Tracing 15

2.1.8 Efficiency Considerations 17

2.1.9 Biased Rendering Methods 19

2.2 Efficient Ray / Scene Intersection 20

2.2.1 Acceleration Structures for Efficient Ray Tracing 20

2.2.2 Acceleration Structure Traversal 23

2.3 Optimizing Time to Image 31

2.4 Definition of Real-time 32

2.5 Overview of Thesis 33

i real-time ray tracing 35

3 real-time ray tracing 37

3.1 Context 37

3.2 Acceleration Structure 38

3.3 Ray Traversal Implementation 42

3.4 Divergence 43

3.5 Multi-threaded Rendering 44

3.6 Shading Pipeline 45

3.7 Many Lights 47

3.8 Performance 49

3.9 Discussion 51

4 sparse sampling of global illumination 53

4.1 Previous Work 53

4.2 The Irradiance Cache 54

4.3 Point Set 56

4.3.1 Points on Sharp Edges 57

xiii

4.3.2 Dart Throwing 58

4.3.3 Discussion 59

4.4 Shading the points 59

4.4.1 Previous Work 59

4.4.2 Algorithm Overview 61

4.4.3 Constructing the Set of VPLs 61

4.4.4 Shading using the Set of VPLs 62

4.4.5 Precalculated Visibility 62

4.4.6 The Lightcuts Algorithm 63

4.4.7 Modifications to Lightcuts 64

4.4.8 Reconstruction 65

4.5 Results 68

4.5.1 Conclusion 70

4.6 Future Work 70

4.6.1 Dynamic Meshes 71

4.6.2 Point Set Construction 71

4.7 Discussion 71

ii real-time path tracing 73

5 cpu path tracing 75

5.1 Data Locality in Ray Tracing 75

5.2 Path Tracing and Data Locality 76

5.2.1 SIMD Efficiency and Data Locality 77

5.2.2 Previous work on Improving Data Locality in Ray Trac-
ing 78

5.2.3 Interactive Rendering 80

5.2.4 Discussion 83

5.3 Data-Parallel Ray Tracing 83

5.3.1 Algorithm Overview 84

5.3.2 Data structures 86

5.3.3 Ray Traversal 87

5.3.4 Efficiency Characteristics 88

5.3.5 Memory Use 90

5.3.6 Cache Use 90

5.4 Results 91

5.4.1 Performance 91

5.5 Conclusion and Future Work 93

6 gpu path tracing 95

6.1 Previous Work 95

6.1.1 GPU Ray / Scene Intersection 96

6.1.2 GPU Path Tracing 96

6.1.3 The CUDA Programming Model 97

6.2 Efficiency Considerations on Streaming Processors 99

6.2.1 Divergent Ray Traversal on the GPU 99

xiv

6.2.2 Utilization and Path Tracing 101

6.2.3 Relation between Utilization and Performance 104

6.2.4 Discussion 105

6.2.5 Test Scenes 105

6.3 Improving GPU utilization 106

6.3.1 Path Regeneration 106

6.3.2 Deterministic Path Termination 107

6.3.3 Streaming Path Tracing 110

6.3.4 Results 112

6.4 Improving Efficiency through Variance Reduction 115

6.4.1 Resampled Importance Sampling 115

6.4.2 Implementing RIS 116

6.4.3 Multiple Importance Sampling 116

6.4.4 Results 117

6.5 Discussion 117

7 the brigade renderer 121

7.1 Background 121

7.2 Previous work 123

7.3 The Brigade System 124

7.3.1 Functional Overview 125

7.3.2 Rendering on a Heterogeneous System 126

7.3.3 Workload Balancing 127

7.3.4 Double-buffering Scene Data 129

7.3.5 Converging 130

7.3.6 CPU Single Ray Queries 130

7.3.7 Dynamically Scaling Workload 131

7.3.8 Discussion 131

7.4 Applied 132

7.4.1 Demo Project “Reflect” 132

7.4.2 Demo Project “It’s About Time” 134

7.5 Discussion 137

8 conclusions and future work 139

iii appendix 145

a appendix 147

a.1 Shading Reconstruction Implementation 147

b appendix 149

b.1 Reference Path Tracer 149

b.2 Path Restart 150

b.3 Combined 152

c appendix 157

c.1 MBVH/RS Traversal 157

d appendix 163

d.1 GPU Path Tracer Data 163

xv

bibliography 169

xvi

A C R O N Y M S

AABB Axis-Aligned Bounding Box

AO Ambient Occlusion

AOS Array of Structures

BDPT BiDirectional Path Tracing

BRDF BiDirectional Reflection Distribution Function

BSDF BiDirectional Scattering Distribution Function

BSP Binary Space Partitioning

BTB Branch Target Buffer

BVH Bounding Volume Hierarchy

CDF Cumulative Distribution Function

CPU Central Processing Unit

CSG Combinatorial (or Constructive) Solid Geometry

CUDA Compute Unified Device Architecture

ERPT Energy Redistribution Path Tracing

FPS Frames per Second

GI Global Illumination

GPU Graphics Processing Unit

HDR High Dynamic Range

IS Importance Sampling

IGI Instant Global Illumination

MLT Metropolis Light Transport

MIS Multiple Importance Sampling

MC Monte Carlo

MBVH Multi-branching Bounding Volume Hierarchy

xvii

PT Path Tracing

PDF Probability Distribution Function

QMC Quasi-Monte Carlo

RS Ray Streaming

RPU Ray Processing Unit

RMSE Root Mean Squared Error

SAH Surface Area Heuristic

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

SOA Structure of Arrays

SPP Samples per Pixel

TTI Time To Image

VPL Virtual Point Light

xviii

1
I N T R O D U C T I O N

Video games have shown a tremendous development over the years, fueled by
the increasing performance of graphics hardware. Game developers strive for
realistic graphics. Until about a decade ago, this mapped reasonably well to the
rasterization algorithm1, as the focus was on increasing polygon counts and the
improvement of the quality of local effects, while retaining real-time performance.
Recently, attention has shifted to the simulation of global effects, which do not map
well to the rasterization algorithm. Approximating algorithms are available, but
are often case-specific, mutually exclusive and labor-intensive. At the same time,
an alternative algorithm has become feasible on standard PCs, in the form of ray
tracing, which is slower for game graphics but not bound to approximations for
global effects. On the contrary; global effects come naturally with this algorithm.
However, feasibility of this algorithm for real-time applications completely depends
on available processing power.

Graphics for games require a minimum frame rate. Low frame rates mean slug-
gish responses to player input, which in turn leads to a less immersive experience.
The desired frame rate for a game depends on the genre. For non-interactive media,
24 frames per second is generally enough to perceive movement as fluent. However,
for interactive media, 24 frames per second means a worst-case response time of
1/12

th of a second2. For this reason, games that require fast reflexes will typically
run at very high frame rates, often higher than what the monitor can display3.
For a game, an acceptable frame rate takes precedence over image quality and
accuracy. This explains the preference for the rasterization approach, and also why
frame rate has been more or less stable over the past decades, while image quality
gradually increased. This also explains why game developers tend to prefer fast
approximations over more accurate algorithms.

The desire for realistic, real-time graphics fueled the development of dedicated
graphics hardware. This hardware enabled the use of higher resolutions and
polygon counts, in particular for the rasterization approach. The new hardware
is less efficient for ray tracing approaches. Resolution and polygon count are not
the only factors that determine realism however. Global effects such as shadows
and reflections also play an important role, but these are not trivially implemented
using software rasterization or rasterization hardware.

1 In this thesis, the term rasterization is used for both z-buffer scan conversion and the painter’s
algorithm.

2 User input may occur just after frame rendering started. In this case, the input will be taken into
account for the next frame, which is presented 2 frames after the input event. Average response
time is 1.5 frame; minimal response time is 1 frame.

3 Some professional players prefer frame rates in excess of 200 for Quake 3 Arena.

1

When striving for further advances in image quality, we thus face the following
problem: within the constraints of computer games, graphics algorithms are reach-
ing the limits of the underlying rasterization algorithm. An alternative algorithm
is available in the form of ray tracing, but this algorithm does not map well to
specialized graphics hardware, and requires too much processing power to display
images at desired frame rates. In this thesis, we want to explore how we can
improve the performance of ray tracing on commonly available gaming platforms
such as PCs and consoles, to bring ray tracing within the time constraints dictated
by gaming.

1.1 graphics in games

The level of realism in computer games has increased significantly since the first
use of a computer for this purpose [92]. This progress is driven by the desire of
players to submerge themselves in a virtual world, for varying reasons. According
to Crawford [55], humans use games to compete and to train their skills, alone or
in groups, and to find fulfillment for their fantasy. Games also serve as a means to
escape social restrictions of the real world.

This competition, fulfillment, and training is not only found in computer games:
e.g., a game of chess can fully absorb a player, challenging a worthy opponent,
based on equal rules for either player, disregarding stature. Compared to classic
games, computer games do however add several elements. A computer game is an
interactive simulation in which one or more players partake; it provides artificial
opponents, and governs a closed system with objective rules. Increasing realism
improves the game: training is more useful when the simulation approaches reality,
and bending social rules becomes more satisfying when the virtual world resembles
the real world.

Realism in computer games went through several stages before it reached today’s
level4. The first game that used graphics of any kind ran on the 35x16 pixel
monochrome display of an EDSAC vacuum-tube computer (figure 1a), and played
tic-tac-toe [70]. Color graphics first appeared in the Namco game Galaxian [166]
(figure 1b). Three-dimensional polygonal graphics first appeared in the Atari arcade
game I, Robot [236], although 3D games using scaled sprites were available before
that [167, 211]. On consumer hardware, basic 3D graphics were available as early
as in 1981, in the game 3D Monster Maze, on the Sinclair ZX-81 [78] (figure 1c). 3D
wire-frame graphics appeared shortly after that, in Elite [36] on the Acorn Electron
home computer. Solid polygons were introduced in 1988, in Starglider [154]. Texture
mapping first appeared in idSofware’s Catacomb 3D [42].

Hardware accelerated 3D graphics for gaming consoles and PC’s were first
introduced by the 3DO company in 1993 [1]and NVidia in 1995 [172], but were

4 A highly detailed time line, not specific to games, is available here:
http://www.webbox.org/cgi/_timeline50s.html

2

Figure 1: The EDSAC, Galaxian, and 3D Monster Maze.

popularized by 3dfx in 1996 [3]5. These graphics coprocessors use z-buffer scan
conversion for visibility determination. As a result of the availability and subse-
quent rapid advance of this dedicated hardware, the z-buffer algorithm quickly
became the de facto standard for high performance rendering.

Up to this point, real-time graphics were limited to flat shaded or Gouraud-
shaded polygons with textures, and no global effects were used. This changed
with a number of newer games: In 1996, Duke Nukem 3D [2] used reflections and
shadows on planar surfaces; in 1997, Quake II [43] used precomputed radiosity
stored in textures (lightmaps) on static geometry; in 2004 both Half Life 2 [52] and Far
Cry [56] used refraction for realistic water. Implementing global effects in a z-buffer
scan conversion based engine requires the use of approximating algorithms6. This
leads to high code complexity in the most recent engines: e.g., CryEngine consists
of 1 million lines of code, the Unreal 3 engine 2 million [274, 153].

1.2 ray tracing versus rasterization

Current game graphics are based on the rasterization algorithm7. Depth- or z-buffer
scan conversion (rasterization) is the process of projecting a stream of triangles to
a 2D raster (color and depth buffer), using associated per-triangle data (figure
2a). During this process, fragments whose depth are greater than or equal to a
previously stored depth are discarded. Usually, a limited set of global data is
available, such as active light sources. Early GPUs implemented scan conversion
in hardware, while the rest of the rendering pipeline remained in software [72,
158, 172, 3]. Modern GPUs implement the full rendering pipeline in hardware
[173], with individual parts programmable on the GPU itself, making the GPU

5 The actual start is hazy: Atari used a TMS34010 GSP for the arcade game Hard Drivin’ in 1989

[113]. Commodore used a graphics coprocessor in the Commodore Amiga in 1985 [49]. This chip
only accelerates span rendering, and does not render polygons.

6 Of all secondary effects, only hard shadows can be considered to be more or less solved, although
even the best solutions suffer from rendering artifacts. Up til today, reflections and refractions are
approximated in either a highly application-specific way, or with considerable artifacts. Indirect
lighting is severely under-sampled, or screen-space based, if present at all.

7 Rasterization: z-buffer scan conversion. Early versions used the painter’s algorithm instead.

3

a more general purpose processor. The rendering pipeline consists of transform
and lighting, polygon setup, and z-buffer scan conversion [8]. In a programmable
pipeline, vertex shaders are used during the transform and lighting stage, geometry
shaders are used during the polygon setup stage, and pixel shaders are used during
z-buffer scan conversion. While this makes individual stages programmable, the
stages themselves remain in a fixed order. As a consequence, a modern GPU is
still a special purpose processor designed for rasterization, rather than general
computing.

Although z-buffer scan conversion allows for efficient rendering of 3D scenery,
it also has limitations, mainly because of its inherent streaming nature. Shadows,
reflections, refractions and indirect lighting all require global knowledge of the
scene. Since a rasterizer renders the scene one triangle at a time, this information
is not available.

Usually workarounds are available however. For shadows of point light sources,
an early solution was to create simplified, flattened shadow geometry, and to draw
this geometry under a racing car on the track geometry. Later, shadow volumes
were drawn to a stencil buffer in a separate pass. This buffer was then used during
triangle stream processing to determine which pixels reside in the shadow. In
modern engines, shadows are rendered using shadow maps [266]. These are depth
maps, constructed in a separate pass per light source, by rendering the scene from
the viewpoint of each light source. During triangle stream processing, pixels are
transformed into the space of the light, and tested against the depth map. Shadow
map approaches typically suffer from aliasing, but several algorithms are available
to alleviate this. For a survey of shadowing techniques, see the survey of Woo et al.
[268] and, more recently, Hasenfratz et al. [102].

Approximations for reflection and refraction also exist. Reflections have been
used to make cars in racing games more realistic, and for rendering water [122, 159].
Refraction has been used to improve the appearance of water and gems [161].
However, unlike hard shadows, reflections and refractions are quite far from the
correct solution. The reflected environment is often infinitely distant and static [31].
Reflections of dynamic environments are achieved by updating the environment in
a separate pass. In this case, the reflection is still only correct for distant objects, and
self-reflection remains impossible. Since the human eye is not nearly as sensitive
to correct reflections as it is to correct shadows [198], convincing results are often
achieved, despite these limitations. Artifacts are often most apparent when objects
intersect a reflective surface, such as water, in which case obvious discontinuities
appear.

Ray tracing, in the context of computer graphics, is the construction of a synthesized
image by constructing light transport paths between the camera, through the screen
pixels, to the light sources in the scene (figure 2b). The vertices of these paths lie
on the surfaces of the scene. Paths or path segments can be traced either forward
(starting at light sources) or backward (starting at the camera). Ray tracing can
be done deterministically, in which case rendering is limited to perfect specular

4

Figure 2: Rasterization and ray tracing. a.) A rendering pipeline based on rasterization
iterates over the polygons of the scene, projecting them onto the screen plane,
and modifying each covered pixel. b.) A renderer based on ray tracing loops over
the pixels of the screen, and finds the nearest object for each of them. A light
transport path is then constructed by forming a path to a light source.

surfaces and diffuse surfaces that are lit directly by point lights [265] (figure 3a).
This allows rendering of accurate specular reflections, refractions and hard shadows.
This deterministic form of ray tracing is referred to as Whitted-style ray tracing or
recursive ray tracing. Cook et al. proposed to extend this with stochastic sampling of
certain light paths, in which case soft shadows and diffuse reflections are calculated
as the expected value of a random sampling process [51] (figure 3b). This form of
ray tracing is referred to as stochastic ray tracing or distribution ray tracing. Kajiya
generalizes the concept of stochastic sampling, by randomly sampling all possible
light transport paths [125] (figure 3c). His path tracing algorithm is able to render
most natural phenomena, including diffuse reflections, diffraction, indirect light
and caustics, as well as lens- and film effects such as depth of field and motion
blur.

Like rasterization-based rendering algorithms, ray tracing has disadvantages.
These are mostly performance related: considering that game developers strive for
high frame rates, ray tracing has never been an option. Many games do use ray
tracing indirectly however. Cut scenes are often rendered using offline ray tracing
software. Some games use ray tracing to bake accurate lighting in light maps. Ray
tracing also appears in several demos, where it is used to show off optimization
skills and mathematical knowledge. Still, ray tracing never made it beyond the
point of being an interesting technical challenge.

Where rasterization-based rendering algorithms struggle to approximate com-
plex light transport, algorithms based on ray tracing generally struggle to achieve
sufficient performance. This contrast is further emphasized when global illumina-
tion is desired. Approximating glossy and diffuse reflections in rasterization-based
renderers requires complex algorithms, which often yield coarse results. When
using ray tracing, the correct solution is easily achieved using existing algorithms,
but calculating this solution in real-time is currently not possible on consumer
hardware.

5

Figure 3: Three well-known ray traced scenes. a.) Whitted style ray tracing with recursive
reflection and refraction. This image is © 1980 ACM, Inc. Included here by
permission. b.) Cook’s distribution ray tracing with stochastically sampled motion
blur and soft shadows. This image is © 1984 Thomas Porter, Pixar. c.) Kajiya’s
path tracer, with indirect light and caustics. Included here by permission.

Once the performance required to simulate light transport using ray tracing is
available, it seems likely that ray tracing will be the prevalent choice for rendering.
For the field of games, this is an attractive prospect; one that promises elegant
rendering engines, a more efficient content pipeline, and realistic visuals.

1.3 previous work

Several researchers sought to use the ray tracing algorithm for interactive and
real-time rendering.

Initially, this required the use of supercomputers. Muuss deploys a 28 GFLOPS
SGI Power Challenge Array to ray trace combinatorial solid geometry (CSG) models
of low complexity at 5 frames per second and a resolution of 720x486 pixels [164].
Parker et al. used a 24 GFLOPS SGI Origin 2000 system and achieved up to 20

frames per second at 600x400 pixels [184]8.
On consumer hardware, interactive frame rates were first achieved by Walter et

al. using their RenderCache system [258, 259], which uses reprojection (as earlier
proposed by Adelson and Hodges [5] and Badt [123]) and progressive refinement
[25] to enable interactivity. For their OpenRT ray tracer, Wald et al. use networked
consumer PCs to achieve interactive frame rates on complex scenes [248, 250].
Real-time ray tracing on a single consumer PC was first achieved by Reshetov et
al. [203]. Like OpenRT, their system is CPU-based. Other interactive and real-time
CPU-based ray tracers are the Manta interactive ray tracer [26, 225, 118], the Arauna
real-time ray tracer [27], the RTFact system [221], Intel’s research group’s ray tracer
Garfield [204] and Embree [76] and Razor [67].

Concurrently, several GPU-based ray tracers were developed. Building on early
work by Purcell et al. [197], Carr et al. [45] and Foley et al. [81], Horn et al., Günther
et al. and Zhou et al. propose interactive GPU-based ray tracers [108, 97, 276]. A
generic ray tracing system for GPUs, OptiX, was proposed by Parker et al. [185].

8 By contrast, in 1999 a high-end Pentium 3 consumer system achieved 84 MFLOPS.

6

The potential of ray tracing for games is recognized by several authors (e.g.,
[207, 244, 33, 196]. Others, such as Oudshoorn and Friedrich et al. studied this
more in-depth [177, 209, 82]. The OpenRT ray tracer was applied to two student
games [119], as well as walkthroughs of Quake 3, Quake 4, Quake Wars and
Wolfenstein scenery [192, 194, 195]. Keller and Wächter replaced the rasterization
code of Quake 2 with ray tracing code [135].

Inspired by dedicated rasterization hardware, several authors propose dedicated
hardware designs for Whitted-style ray tracing. Schmittler et al. propose the Saar-
Cor hardware architecture for ray tracing [207]. An improved design is prototyped
using an FPGA chip [208, 269, 270]. The authors use this hardware to render a
number of game scenes, and report a three-fold speed-up, compared to OpenRT.

It was only recently that interactive path tracing on consumer hardware was
investigated. Novák et al. proposed a GPU path tracer that renders interactive
previews [171]. Van Antwerpen proposed a generic architecture for GPU-based
path tracing algorithms, and used this to implement several interactive physically-
based renders [238].

1.4 problem definition

The desire to use global illumination in games, and the complexity of algorithms
that aim to achieve this using rasterization-based rendering, leads to the desire
to replace rasterization by ray tracing as the fundamental rendering algorithm
in games. The fundamental question discussed in this thesis is how this can
be achieved, within the strict constraints of real-time rendering, on consumer
hardware.

To answer this question, we validate and combine existing work into several
complete, well-optimized renderers, which we apply to practical game applications.

In the first part of this thesis we discuss efficient Whitted-style ray tracing, and
its suitability for rendering for games. We further discuss how the basic algorithm
can be augmented with diffuse indirect light.

In the second part of this thesis we focus on physically based rendering using
path tracing, where computational demands are even higher. We approach this
problem first on the CPU, where a data-parallel technique is used to improve
performance. We then discuss efficient GPU implementations, and combine these
in a single rendering framework.

We validate the developed systems by applying them to several real-time games.

1.5 thesis overview

This thesis is organized as follows:
Chapter 2 provides a theoretical foundation for the subsequent chapters.
Chapter 3 describes the implementation of the Arauna ray tracer. Arauna is cur-
rently the fastest CPU-based Whitted-style ray tracer, and has been used for seven

7

student projects. There are consequences of using a ray tracer as the primary
rendering algorithm, for both the game programmer and the game graphics artist.
These are outlined in this chapter as well.
Chapter 4 describes a mesh-less algorithm for sparsely sampling expensive shading,
such as soft shadows, large sets of lights, ambient occlusion and global illumination.
The algorithm is used in Arauna to enhance ray tracing with indirect diffuse
reflections, which is approximated spatially using a sparse sampling approach.
In chapter 5 and 6 we describe efficient path tracing on the CPU and the GPU.
Chapter 7 describes the Brigade path tracer, which uses multiple GPUs to achieve
real-time frame rates for complex scenes, albeit with a limited number of samples
per pixel. Despite high variance in the rendered images, the Brigade path tracer
enables real-time path tracing in games on current generation consumer hardware
for the first time.
Chapter 8 finally summarizes our findings, draws conclusions and summarizes
directions for future research.

8

2
P R E L I M I N A R I E S

In this chapter, we lay the foundation for the remainder of this thesis. In section 2.1,
we introduce the rendering equation, and rendering algorithms that approximate
its solution, with trade-offs typically between performance and accuracy. In section
2.2, we discuss ray / scene intersection, as the fundamental operation of the ray
tracing algorithm. Section 2.3 discusses the combination of the two for optimal
efficiency in rendering algorithms based on ray tracing. Section 2.4 provides a
definition of real-time in the context of graphics for games.

2.1 a brief survey of rendering algorithms

Rendering is the process of generating an image from a virtual model or scene, by
means of a computer program. The product of this process is a digital image or
raster graphics image file. Rendering can focus on two distinct qualities:

rendering quality The first optimizes the fidelity of the final rendered image,
while the time needed to render images is of less importance. This approach
is typically associated with the ray tracing algorithm and offline rendering.

performance The second makes a fixed or minimum frame rate a constraint,
and optimizes the level of realism that can be obtained at this frame rate.
This approach is generally associated with rendering algorithms based on
the z-buffer scan conversion algorithm (rasterization), and is widely used in
games.

As compute power increases, rendering techniques that were traditionally reserved
for off-line rendering find their way into interactive rendering and real-time ren-
dering. Rasterization has been augmented with algorithms for shadows, reflections
and global illumination, and Whitted-style ray tracing has become interactive on
mainstream hardware.

Rendering based on rasterization is typically approximative. Improving image
fidelity is achieved by combining many algorithms for the various desired phe-
nomena. The cost of image quality is more accurately expressed in terms of code
complexity, than required processing power.

Rendering based on ray tracing in principle allows for more straightforward
implementation, and higher levels of realism. Renderers based on ray tracing
typically accurately implement a subset of all possible light transport paths. Adding
additional types of light transport typically requires extra processing power more
than algorithmic complexity.

9

In the chapters three through seven, we will discuss recursive ray tracing, sparsely
sampled global illumination and path tracing in the context of real-time graphics
for games. This chapter provides the theoretical foundation for this. In section 2.1.1,
we first provide a brief review of light transport theory, followed by a description
of rendering techniques as approximations of the rendering equation. Physically-
based rendering is discussed in section 2.1.4. Biased rendering methods are briefly
discussed in section 2.1.9.

2.1.1 The Rendering Equation

Physically-based rendering algorithms aim to produce realistic images of virtual
worlds by simulating real-world light transport. Light transport is commonly
approximated using the rendering equation, introduced by Kajiya in 1986 [125].
We start with the following formulation, which integrates over all surfaces in the
scene and includes an explicit visibility term:

L(p→ r) =Le(p→ r) +

∫
M

L(q→ p) fs(q→ p→ r)G(q↔ p)V(q↔ p)dAM(q)

G(p↔ r) =
| cos(Θo) cos(Θ ′i) |

‖p− r‖2
(2.1)

This equation defines the radiance transported from point p to point r recursively
as the light emitted by p towards r, plus the incoming light reflected by p, taking
into account the visibility of each surface q in the scene. G(q↔ p) is the geometric
term to convert from unit projected solid angle to unit surface area. In this term,
Θo and Θ ′i are the angles between the local surface normals and respectively the
incoming and outgoing light flow. V(q↔ p) is the visibility term, which is 1 if the
two surface points are visible from one another and 0 otherwise. The process is
illustrated in figure 4.

The equation makes a number of simplifying assumptions: the speed of light
is assumed to be infinite, and between surfaces in the scene, light travels in a
vacuum, and in straight lines. Furthermore, reflection is instant. The wavelength λ
is constant, and p is an infinitely small point. And finally, the wave properties of
light are ignored. The consequence is that a number of physical phenomena cannot
be described using this equation. These include diffraction, fluorescence, phospho-
rescence, polarization, and relativistic effects. Various authors suggest extensions to
the rendering equation to increase the number of supported phenomena. Smith et
al. factor in the speed of light [222], describing irradiant flux as power rather than
energy, similar to the radiosity equation proposed by Goral in 1984 [94]. A similar
extension is proposed by Siltanen et al., to make the rendering equation suitable
for acoustic rendering [217]. They later extended their acoustic rendering equation
to support diffraction [216]. Wolff and Kurlander describe a system that supports

10

Figure 4: The rendering equation. Light energy emitted by light sources arrives at the
camera via one or more scene surfaces.

polarization [267]. Glassner proposes an extension to support fluorescence and
phosphorescence [90].

Note that solving the rendering equation by itself does not result in realistic
images. Only when the provided data is accurate and sufficiently detailed, the
produced images will be accurate.

Despite its limitations, the rendering equation is physically based, since the
phenomena that it does support are accurately described, and energy in the system
is preserved1.

2.1.2 Rasterization-based Rendering

Z-buffer scan conversion or rasterization [80] is a streaming process, in which the
polygons of a scene are processed one by one. Polygons enter the rasterization
pipeline in the form of a list of vertices. They are transformed and then used for
primitive assembly. Constructed primitives are clipped against the view frustum,
and projected onto the view port. The projected primitives are broken up in
fragments. Fragments are stored to the output buffer.

This approach has a number of advantages. By operating on a stream, data
locality is implicit: processing a single triangle only requires data for that triangle.
For the same reason, parallel processing of data is trivial, since elements in the
stream are independent. This makes rasterization suitable for dedicated hard-
ware implementations, in which the full rendering pipeline or parts thereof are
implemented.

Rasterization by itself is a visibility algorithm: the end result is, for each pixel of
the output buffer, the nearest triangle, if any. This result can be used to produce a
shaded image. Rasterization-based rendering algorithms are typically interleaved
with the visibility determination. In that case, shading happens on the fly, as
triangles and fragments are processed.

1 Unlike e.g. in the Phong model [189], which is commonly used in real-time graphics.

11

Single-pass rasterization-based rendering implements the following approxima-
tion of the rendering equation:

L(p→ r) =Le(p→ r) +

NL∑
i=1

L(qi → p) fr(qi → p→ r)G(qi ↔ p) (2.2)

In this equation, the integral over the hemisphere is replaced by the sum of
the contributions of the individual point light sources, and the visibility factor
disappeared. Also, the equation is no longer recursive. Inaccessibility of global data
is a fundamental restriction of rasterization. The only part of the above equation
that requires access to global data is the iteration over the lights in the scene.

The differences between equation 2.1 and equation 2.2 have several consequences
for rendering. Lighting is limited to point lights, but more importantly, all effects
that require global data are unsupported. This includes several effects that are
important for the correct interpretation of rendered images, such as shadows and
reflections. With these limitations however, the rasterization is able to operate using
very limited resources.

Rasterization can be augmented with a large number of algorithms that ap-
proximate global effects. Most notably, shadows from point light sources (and to
some extent, soft shadows) can be rendered convincingly. While this generally
requires extra render passes, it effectively implements the visibility factor for the
rasterization algorithm. This blurs the line between rasterization and ray tracing,
both in terms of supported features and required resources.

2.1.3 Ray Tracing

Ray tracing is the process of determining visibility between two points in the scene,
or the nearest intersection along a ray2. The latter is also referred to as ray casting.
Ray tracing was first applied to computer graphics in 1968 by Appel [11], who shot
rays from the eye (camera) to the pixels of the screen, to determine what geometry
should be visible at each pixel. As shown by Whitted in 1980, basic ray casting can
be extended to determine shadows, by tracing rays from the first intersection point
to light sources. Likewise, reflections are determined by creating a new ray along
the reflection vector [265].

Like rasterization, ray tracing is a process that is easily executed in parallel, since
rays do not interact. Unlike rasterization however, ray tracing potentially requires
access to all scene geometry.

Simple ray casting with shadow rays to point light sources implements the
following approximation of the rendering equation:

2 A ray is defined as an infinite line segment, originating at a point in the scene.

12

L(p→ r) =Le(p→ r) +

NL∑
i=1

L(qi → p) fr(qi → p→ r)G(qi ↔ p)V(qi ↔ p)

(2.3)

Apart from the visibility factor, this is the same equation as 2.2.
Ray casting and rasterization become identical when we limit the ray caster to

primary rays only, and add the constraint that the primary ray targets are laid out
on a regular grid. Dachsbacher et al. [57] have shown that even this requirement can
be relaxed, by extending the commonly used linear edge function approach [191]
to 3D, making ray tracing and rasterization nearly identical for all primary rays.
This also works the other way round: Hunt and Mark have shown that ray tracing
performance can be improved by building specialized acceleration structures per
light, in the perspective space of each light, effectively turning ray tracing into
multi-pass rasterization [110].

For recursive (Whitted-style) ray tracing, equation 2.3 is further extended:

L(p→ r) =Le(p→ r) +

NL∑
i=1

L(qi → p) fr(qi → p→ r)G(qi ↔ p)V(qi ↔ p)

+L(s→ r) fr(s→ q→ r)G(s↔ r)V(s↔ r) (2.4)

Whitted-style ray tracing adds indirect lighting to the direct lighting, but this
is limited to pure specular transmissive and reflective surfaces. The BRDF in the
recursive part of the above formulation is thus a Dirac function.

This limitation is alleviated in distribution ray tracing3, introduced by Cook in
1984 [51]. This algorithm approximates glossy reflections using an integral over the
surfaces in the scene, and soft shadows using an integral over the surface of each
light source:

L(p→ r) =Le(p→ r) +

NL∑
i=1

∫
M

L(q→ p) fr(q→ p→ r)G(q↔ p)V(q↔ p)dAM(q)

+

∫
N

L(s→ r) fr(s→ q→ r)G(s↔ r)V(s↔ r)dAN(s) (2.5)

By unifying emissive surfaces and light sources, this reduces to equation 2.1.

2.1.4 Physically-based Rendering

In the previous section, we described rasterization-based rendering and rendering
algorithms based on ray tracing as partial solutions or approximations of the
rendering equation. In this section, we describe rendering algorithms that provide

3 Also known as stochastic ray tracing

13

a full solution to the rendering equation. We refer to these algorithms as physically
based, as they accurately simulate the supported phenomena, and preserve energy
equilibrium in the system, when fed with correct data.

Solving the rendering equation can either be done using finite elements methods,
such as radiosity [101, 48, 223, 215, 19, 224], or stochastically, using Monte Carlo ray
tracing [125, 144, 143, 241, 121], where the recursive rendering equation is evaluated
using a Markov chain simulation [243]. This approach is often preferred over finite
element methods, as it allows for more complex scenes, procedural geometry, and
arbitrary BRDFs [121, 15]. Monte Carlo ray tracing has an algorithmic complexity
of O(logN) (where N is the number of scene elements), whereas the fastest finite
elements methods require O(NlogN) [48].

The physical equivalent of the set of Markov chains is a family of light paths that
transport light from a light source to the observer, via zero or more diffuse, glossy,
or specular surfaces. The class of rendering algorithms that use this approach is
called path tracing.

2.1.5 Monte-Carlo Integration

The Monte Carlo simulation used in path tracing approximates the integral in the
rendering equation by replacing it by the expected value of a random variable:

E(x) =

∫
Ω

L(q→ p) fr(q→ p→ r)G(q↔ p)V(q↔ p)dAM(q) (2.6)

≈ 1
N

N∑
i=1

L(qi → p) fr(qi → p→ r)G(q↔ p)V(q↔ p)dAM(qi) (2.7)

For a sufficiently large N, this yields the correct answer, according the Law of
Large Numbers:

Prob

[
E(x) =

lim
N→∞ 1

N

N∑
i=1

xi

]
= 1 (2.8)

The variance of the Monte Carlo estimator is var(x) ≡ E([x− E(x)]2) = E(x2) −
[E(x)]2. Since the variance of the estimate is proportional to 1

N , the standard
deviation is proportional to 1√

N
. Therefore, assuming an even distribution of the

random samples is used, we need to quadruple N to halve the error in the estimate.
There are several ways to reduce the variance of the estimator. When using

importance sampling, samples are distributed according to a probability distribution
function (PDF):

E(x) ≈ 1

N

N∑
i=1

L(qi → p) fr(qi → p→ r)G(q↔ p)V(q↔ p)dAM(qi)

P(qi)
(2.9)

14

The PDF can be an arbitrary function, as long as P(q) > 0,
∫
P(q) = 1 and

P(q) > 0 where the integrated function is not zero. For the purpose of variance
reduction, the PDF should match the integrated function, so that more samples are
taken that contribute significantly to the estimate.

Variance can also be reduced by using evenly distributed random samples. One
way to achieve this is using stratification, where the domain of the integrand is
divided in multiple strata of equal size [170].

In the context of rendering, a single sample is a path, whose vertices lie on the
camera, zero or more scene surfaces, and a light source. The contribution of the
light source is scaled at each vertex on the path by fr(qi → p→ r)dAM(qi).

2.1.6 Russian Roulette

The paths that connect the lights to the camera consist of one or more segments.
The total number of surface interactions for one path is potentially infinite. Longer
paths tend to deliver less energy, since each bounce typically absorbs some of
the transmitted energy; however, an artificial maximum on the number of path
segments introduces bias in the estimate.

Russian roulette [14, 73] is a technique where a fraction of the paths is terminated
with a probability ρ at each encountered surface, while the energy of the remaining
paths is scaled by 1

ρ . Using Russian roulette, paths have a non-zero probability of
reaching a certain depth. At the same time, shorter paths are favored over longer
paths, and remaining paths maintain their original intensity.

Termination probability ρ is typically locally determined and proportional to
one minus the hemispherical reflectance of the material of the surface (increasing
termination probability for darker surfaces), but may also be chosen globally, as
proposed by Keller [132]. A global termination probability may however cause
infinite variance [231].

2.1.7 Path Tracing and Light Tracing

Path tracing performs the Markov chain simulation by creating paths backwards
from the camera to a light source, via zero or more diffuse, specular, or glossy
surfaces. This process is illustrated in figure 5. In this figure, E denotes the eye, L a
light source, D a diffuse or glossy surface, and S a specular or dielectric surface.
Pseudo code for this process is shown in algorithm 2.1.

The adjoint algorithm for path tracing is light tracing. Here, paths start at the
light, after which a random walk is executed until the eye is found.

Path tracing may require a large number of bounces until a light source is found,
especially when the light sources are small. To some extend, next event estimation
(see next subsection) can improve efficiency in this situation. A large number of
possible paths may however exist for which next event estimation does not help,
e.g. when lights are inside or behind transmissive objects, or visible via specular

15

Figure 5: A Markov chain representing a single path connecting a light source and the
camera, via three surfaces. At each vertex, the transported energy is scaled by the
BRDF. Along each path segment, energy is scaled by the geometry factor.

Algorithm 2.1 The basic recursive path tracing algorithm. The path is extended in
direction R until a light source is encountered. The contribution of the light source
is then transferred along the path, and scaled by the BRDF and geometry factor at
each vertex I.
function Trace(O,D)

// find material, distance and normal along ray
material, I,

−→
N ← findnearest(O,

−→
D)

if (is light(m))

// path reached light source
returnmaterial.Emissive

else
// path vertex: diffuse or specular
return Trace(I,R) ∗BRDF(I,R,D) ∗ cos(N,R)

16

Figure 6: Bidirectional path tracing: a path is generated backward from the camera, and
forward from a light source, and connected to form a complete light transport
path.

objects. Bidirectional path tracing [241, 143] combines path tracing and light tracing.
A path is constructed starting from the eye, as well as from a light source. The
vertices of the sub-paths are then connected to form complete light transport paths.

The process is illustrated in figure 6.

2.1.8 Efficiency Considerations

For many scenes, path tracing and light tracing are not very efficient. In scenes
with small light sources, it may take a very large number of path segments to reach
the light source, at which point the transported energy is low, as it is scaled by
the BRDF and the geometry factor at each surface interaction. Paths that happen
to reach a light source in only a few steps will contribute much more to the final
estimate. It is thus worthwhile to focus effort on these paths.

importance sampling Importance sampling is a technique that aims to reduce
variance in a Monte Carlo estimator by sampling the function of interest
according to a probability distribution function (pdf) that approximates the
sampled function. In the path tracing algorithm, we use importance sampling
to improve the estimate of both indirect and direct illumination. For indirect
illumination, the pdf is commonly chosen proportional to the surface BRDF.
For the estimation of direct lighting, we chose lights according to potential
contribution.

resampled importance sampling In their 2005 paper, Talbot et al. propose a
technique they refer to as Resampled Importance Sampling (RIS) [234]. Their
technique uses importance sampling to make a first selection of samples. For
this selection, a more accurate pdf is constructed. This pdf is then used to
select the final sample from the initial selection. Note that the weight of a
sample selected using importance sampling is scaled by the reciprocal of the
pdf; therefore, we scale the final sample by the product of the reciprocals
of the two pdfs used for the selection process. The time complexity of RIS
approach is O(M), where M is the size of set of the initially selected samples.

17

Figure 7: Next event estimation in path tracing: at each diffuse surface interaction, an
explicit path to a light source is constructed. This allows reuse of path segments,
and strongly decreases the average path length.

multiple importance sampling Multiple importance sampling (MIS) was pro-
posed as a variance reduction technique for computer graphics by Veach [241].
When using MIS, several sampling strategies are combined using a heuristic,
with the aim to keep the strengths of each individual strategy. In a path tracer,
MIS is commonly applied to estimate direct lighting. To estimate the direct
light contribution, two practical strategies are available. The first is to sample
direct light explicitly. In this scenario, a ray is created towards a random light
source, either using a uniform random number, or according to some pdf.
The second available strategy uses a pdf proportional to the surface BRDF.
As shown by Veach in his Ph.D. thesis, certain common lighting conditions
are handled considerably better by one of the strategies, but not by the other:
light cast by a small light source and reflected by a glossy surface should be
sampled using explicit light rays, while a large area light reflected by a nearby
diffuse surface exhibits less variance when it is sampled according to the
BRDF of the diffuse material. A practical implementation of MIS estimates
direct light by creating two rays, one according to each strategy. For each ray,
a weight is calculated using the power heuristic: weight = pa2/(pa2 + pb2),
where pa is the probability that the chosen strategy would generate this
ray, and pb the probability that this ray would have been generated by the
alternative strategy.

next event estimation One way to exploit the higher contribution of short paths
is next event estimation [73], where an explicit path is created for each non-
specular vertex on the path to a light source in the scene4 (see figure 7). Next
event estimation separates indirect from direct illumination, and explicitly
handles direct illumination for each surface interaction. This is compensated
by omitting direct lighting in cases where a path ’accidentally’ encounters an
emissive surface.

4 Russian roulette and next event estimation can thus both be considered to be forms of importance
sampling.

18

Figure 8: Metropolis light transport: a path that was constructed using a random walk is
mutated to explore path space.

metropolis light transport This algorithm combines path tracing or bidirec-
tional path tracing with the Metropolis-Hastings algorithm to make small
modifications to the generated paths. This allows the algorithm to explore
nearby paths, once a path from the eye to a light has been found. The process
is illustrated in figure 8.

2.1.9 Biased Rendering Methods

Path tracing and derived algorithms are unbiased approximations to the rendering
equation. Unbiasedness is not a strict requirement for a physically based rendering
algorithm. For the context of rendering for games, a consistent algorithm may be
sufficient, and in many cases, even consistency may not be a strict requirement. In
this section we discuss biased rendering methods, which trade unbiasedness or
even correctness for rendering performance, while remaining physically based.

An algorithm is consistent, if it is correct in the limit: it approaches the correct
solution as computation time increases. It is however not necessarily possible to
give a bound for the error at any given time [54], and averaging many renders using
the approach does not necessarily converge to the correct solution. An estimator xi
for a quantity I is consistent for ε if:

lim
i→∞P [|xi − I| > ε] = 0 (2.10)

In other words, given enough time, the error of the estimate will always be less
than ε. Based on equation 2.8, an estimator xi is unbiased if:

E [xi − I] = 0 (2.11)

In other words: an algorithm is unbiased, if it is correct on average [53].
In this section, we will provide a brief description of physically-based rendering

algorithms that are consistent, but not unbiased. Allowing some bias in the solution
often allows for more efficient algorithms. Depending on the context, bias may

19

or may not be an issue. In the context of realistic graphics for games, some bias
is acceptable, and often of less importance than (unbiased) noise. E.g., a post
processing filter that removes fire flies in the output of a path tracer introduces
bias, but improves image quality for almost all purposes.

photon mapping Photon mapping is a two-pass algorithm that uses forward
path tracing to create a photon map, and backward ray tracing to create the
final image using the information in the photon map [121]. In the first pass,
photons are created on the light sources, proportional to the intensity of the
light source. The photons propagate flux into the scene, and deposit this in
the photon map for each non-specular surface interaction. In the second pass,
backward ray tracing is used to construct paths from the camera. At each
non-specular surface interaction, the flux of photons within a small radius is
added to the direct illumination calculated by the backward ray tracing.

instant radiosity Similar to photon mapping, the instant radiosity algorithm
[132] traces light paths until a diffuse surface is encountered, at which point
a virtual point light (VPL) is created. In a second pass, the scene is rendered
using ray tracing or rasterization, using the set of VPLs to add indirect
lighting to the direct lighting.

irradiance caching The irradiance cache algorithm sparsely samples global
illumination and uses interpolation to reconstruct global illumination for
points where no sample is available [264]. Samples are added on-the-fly if the
error bound of the approximation exceeds a specified value. The Irradiance
Cache algorithm is discussed in more detail in chapter 4.

2.2 efficient ray / scene intersection

The basic underlying operation of all rendering algorithms based on ray tracing is
the calculation of the intersection of a ray (or a collection of rays) and the scene.
The efficiency of this operation has a great impact on the overall efficiency of
the rendering algorithm, and has received extensive attention. In this section, we
describe various divide and conquer approaches.

2.2.1 Acceleration Structures for Efficient Ray Tracing

The time spent in an application can be formally described using the following
formula by Hsieh [109]:

Total time =

#tasks∑
i=0

time of taski (2.12)

where

20

time of taski =
work of taski

rate of work of taski

Improving the performance of an application can thus be achieved in two ways:
we can reduce the algorithmic complexity, by reducing the number of times a
specific task is executed, or we can reduce the time it takes to execute a particular
task (also known as low-level optimization5). Formally expressing algorithmic
complexity can be done using the Big O notation. Formally describing execution
time of a single task is possible, but uncommon: actual timing depends on the
hardware architecture that is used, and as a result, it is generally determined
empirically. Exceptions are compact tasks that are executed at high frequencies,
such as triangle intersection algorithms or traversal kernels, for which operand
counts and code path execution probability can be used for platform-independent
comparisons. Recent processor technology advances, such as branch prediction
and instruction pipelining, reduce the validity of such comparisons however.

A naive ray tracer can be divided in the following major components:

• Ray / primitive intersection;

• Shading.

For N primitives, the cost of intersection is O(N), while the cost of shading is
independent of the number of primitives, and thus O(1). Initial optimization
therefore should focus on intersection cost, which dominates the total run-time of
a ray tracer. For this, acceleration structures are used. Early ray tracers did not use
these: although Whitted used bounding spheres for complex objects such as bi-
cubic patches, these bounding spheres are not used hierarchically 265. Shortly after
that however, Rubin and Whitted proposed a hand-crafted hierarchy of oriented
bounding boxes to speed up ray / primitive intersection 205.

Acceleration structures can be divided in two classes: spatial subdivisions and
object hierarchies.

A spatial subdivision subdivides the space in which primitives reside, often
recursively. Primitives that overlap an area are stored in these areas. It is thus
possible for an object to be stored in multiple areas. It is also possible for an area
to be empty. Examples of this class of acceleration structures are:

octrees Figure 9a. First introduced for ray tracing in 1984 by Glassner [89]. An
octree starts with a bounding cube of the scene, and recursively subdivides
this cube into eight cubes, until a termination criterion is met6. Octrees are
quick to build (with an algorithmic complexity of O(N)) and are useful for
reducing the number of ray / primitive intersections. They do however not
adapt well to varying levels of detail the scene (often referred to as the “teapot
in a stadium” problem).

5 Some authors refer to this as the C in the Big O notation.
6 Typically: the number of primitives in each octree node reaches a certain threshold, or a maximum

depth is reached

21

Figure 9: Spatial subdivisions: quadtree (2D equivalent of the octree), BSP, kD-tree.

grids First proposed by Fujimoto and Iwaka in 1986 by Fujimoto et al. [83]. The
simple 3D extension to the DDA line algorithm7 was later improved upon by
Amanatides and Woo [9]. Uniform grids can be built in O(N), but like octrees,
they do not adapt well to the scene, and construction parameters need to
be manually tweaked per scene for optimal performance. Non-uniform and
hierarchical grids alleviate this to some extent. Recently, uniform grids where
considered for fast construction times in dynamic scenes [115].

bsps Figure 9b. Binary Space Partitioning (BSP) splits space recursively using
a single split plane at a time. Although the orientation of this plane is
unrestricted, in practice several authors use axis aligned split planes. The axis-
aligned BSP-tree is commonly referred to as kD-tree in graphics literature8

(figure 9c). The use of axis-aligned split planes reduces the complexity of tree
construction [228, 104]. In 2008, Ize et al. used an unrestricted BSP tree [117],
and showed the resulting trees are often superior to restricted variants, albeit
at the expensive of long build times. BSPs adapt well to the scene, and can be
efficiently traversed, as shown by Jansen in 1986 [120]. High-quality kD-trees
can be automatically constructed, using the surface area heuristic (SAH), by
Goldsmith and MacDonald [91, 155]. Later, this was further improved by
Hurley et al., using the empty space bonus [112]. Wald and Havran showed
that kD-trees can be efficiently constructed in O(N logN) [247]. Zhou et al.
showed that kD-trees can also be constructed efficiently on the GPU [276].

An object subdivision subdivides the list of primitives, rather than space. Since
primitives are not split in such schemes, the space that primitives in different
nodes of the hierarchy occupy may overlap. Examples of this class of acceleration
structure are:

7 ’Digital Differential Analyzer’, e.g. the algorithm developed by Bresenham [38].
8 In other branches of computer science, the kD-trees (or k-d tree) is a spatial subdivision used to

store points [23]. In a k-d tree, points are typically stored in all nodes, not just in the leafs. In CG, a
kD-tree is a restricted form of a BSP, which stores geometry in the leafs. A single primitive may
overlap multiple leafs.

22

Figure 10: Object hierarchy: BVH and BIH.

bvh Figure 10a. Bounding Volume Hierarchies (BVH) recursively subdivides the
list of objects, and stores, at each level of the tree, the bounds of the subtree9.
The bounds of two nodes at the same level in the tree may overlap. Nodes in
the hierarchy cannot be empty. Similar to the kD-tree, good BVHs are obtained
by using the SAH to determine locally optimal splits. Most implementations
implement the BVH as a binary tree. Some implementations however chose
to split nodes in more than two sub-nodes. The QBVH [60]and MBVH [77]
use a maximum of four children per node. Wald et al. propose to generalize
this to any (a priori set) number of child nodes [257].

bih Figure 10b. The Bounding Interval Hierarchy proposed by Wächter and Keller
[242]10 is similar to the BVH, but rather than storing a full bounding box for
each node, it stores intervals along one axis per node.

Blends of the two classes are also possible, and sometimes an acceleration
structure of one class is used to assist in the construction of an acceleration
structure of the other class. Stich et al. proposed a hybrid of bounding volume
hierarchies and kD-trees that combines adaptability of kD-trees to the predictable
memory requirements of BVHs [226]. Walter et al. used a kD-tree to speed up the
agglomerative construction of BVHs [262].

The selection of the optimal acceleration structure for a specific hardware plat-
form, application or even a specific scene is non-trivial. We discuss this choice in
more detail in subsection 2.3.

2.2.2 Acceleration Structure Traversal

The suitability of a particular acceleration structure is strongly dependent on the
efficiency of acceleration structure traversal. In this section, we describe acceleration
structure traversal for kD-trees, BVHs and MBVHs.

9 Objects in a BVH are typically bound by spheres or axis aligned boxes, although oriented boxes (as
used in early work by Rubin and Whitted, [205]) and more general convex polyhedra can also be
used.

10 Developed earlier but independently in other fields than graphics by Zachmann and Nam et
al.[275, 165], and referred to as SKD tree or BoxTrees.

23

Algorithm 2.2 Recursive kD-tree traversal. The far child and near child are deter-
mined based on the sign of the ray direction. Returns distance along ray of the
intersection point.
function Traverse(node, Tnear, Tfar)

ifnode.isleaf
IntersectTriangles(node)

return ray.Tnearest
d← node.split− ray.O[node.axis]/ray.D[axis]

ifd 5 Tnear return Traverse(farchild, Tnear, Tfar)
ifd = Tfar return Traverse(nearchild)
t← Traverse(nearchild, Tnear,d)
if t 5 d returnd
return Traverse(farchild,d, Tfar)

Figure 11: Three cases in kD-tree traversal. Left: the ray visits only the near child node.
Center: the ray visits both child nodes. Right: The ray visits only the far child
node.

kD-tree Traversal

Traversal of the kD-tree acceleration structure has been studied in-depth by several
authors. For a detailed survey, see Havran’s Ph.D. thesis [103]. The most commonly
used traversal algorithm is a recursive scheme, originally proposed by Jansen
[120, 13, 228]. This algorithm is shown in algorithm 2.2, and illustrated in figure
11. In this figure, rays travel diagonally from left to right. The split plane for the
kD-tree root node splits the node along the x-axis. For ray.D.y < 0, the near child
is always the node below the split plane, while the far child is always the node
above the split plane. Three situations are possible:

1. the ray misses the far child, if the distance of the intersection point of the ray
and the split plane d is greater than Tfar;

2. the ray misses the near child if d 5 Tnear;

3. in all other cases, the ray first visits the near child, and, if no intersection is
found, the far child.

This algorithm is typically expressed as an iterative algorithm by using a simple
stack mechanism [133].

24

Algorithm 2.3 Recursive kD-tree packet traversal. The far child and near child are
determined based on the sign of the ray direction, which must be the same for all
rays in the packet. N is the number of rays in the packet.
function Traverse(rays[N])

Tnear[0..N− 1]← 0

Tfar[0..N− 1]← ray[0..N− 1].Tmax
node← root

do
if notnode.isleaf

d[0..N− 1] = node.split− ray[0..N− 1].O[node.axis]/]
ray[0..N− 1].D[node.axis

active[0..N− 1] = Tnear[0..N− 1] < Tfar[0..N− 1]

if anyactive d[0..N− 1] 5 Tnear[0..N− 1]

node← nearchild

else if any actived[0..N− 1] = Tfar[0..N− 1]

node← farchild

else
push(farchild,max(d[0..N− 1],

Tnear[0..N− 1]), Tfar[0..N− 1])

node← nearchild

Tfar[0..N− 1]← min(d[0..N− 1], Tnear[0..N− 1])

else
IntersectTriangles(node)

if all Tfar[0..N− 1] 5 ray.Tmax return
if stack is empty return
popnode, Tnear[0..N− 1], Tfar[0..N− 1]

The kD-tree can be traversed by multiple rays simultaneously using ray packet
traversal, first described by Wald et al. [249]. On systems that support vector
operations (such as SSE [235] and AltiVec [65]), this can yield a considerable
performance improvement. For ray packet traversal, some modifications are made
to the original algorithm:

• each scalar value is replaced by a vector;

• a node is visited if any active ray in the packet wants to visit it.

The iterative packet traversal algorithm is shown in 2.3.
Since the kD-tree traversal scheme depends on strict ordered traversal, and the

order of traversal of child nodes depends on the signs of the ray direction, all
directions of all rays in a packet must have the same signs. When this is not the
case, a packet is split, and two packets traverse the kD-tree independently, both
with some rays deactivated.

An important extension to the basic algorithm was proposed by Dmitriev et al.
[68]. They propose to bound the rays in a packet by four planes, and use these to

25

Algorithm 2.4 A typical inner loop for BVH traversal.
while stacknot empty

if not leaf
ray intersects far child ? push far child
ray intersectsnear child ? pushnear child

else
intersect primitives in leaf

pop

Algorithm 2.5 Basic ray packet traversal for a BVH.
while stacknot empty

if not leaf
any ray intersects far child ? push far child
any ray intersectsnear child ? pushnear child

else
intersect primitives in leaf

pop

cull triangles and nodes of the acceleration structure, similar to the pyramids that
where proposed by Zwaan and Jansen [240]. This technique was later successfully
applied to BVH traversal. Reshetov extended frustum traversal by creating a
transient frustum for the active rays in a packet when a leaf node is visited [202].

BVH Traversal

In 2007, Wald et al. showed that BVH traversal performance can be made competi-
tive by using large packets [254]. Using a BVH as an acceleration structure for ray
tracing has important advantages: unlike a kD-tree, a BVH can be changed locally
while remaining valid. Also, the directions of the rays in the packet do not have to
have the same sign. When using the kD-tree for ray traversal, varying signs require
the packet to be split. This is particularly beneficial for secondary ray packets and
large ray packets.

The basic algorithm for single-ray BVH traversal is shown in algorithm 2.4. Ray
packet traversal of a BVH requires a small modification to this algorithm: instead
of visiting a node if a ray intersects it, the node is visited if any ray in the packet
intersects it. This yields the conceptually simple algorithm 2.5: instead of traversing
a node when a single ray intersects it, a node is visited when any ray intersects it.
Note that for BVH traversal, strict front-to-back ordering cannot be guaranteed, as
the child nodes may overlap. Despite this, choosing an order in which the ’nearest’
child is processed first is advantageous in most situations.

A more efficient ray packet traversal scheme was proposed by Wald et al. [254].
Their scheme consists of three stages to determine whether a node needs to be
visited or not:

1. Trivial accept: when the first active ray in the packet intersects the node;

26

Algorithm 2.6 Efficient BVH ray packet traversal using frustum planes, early accept
and early reject. N is the number of rays in the ray packet.
function FindFirst(rays[N],node,previousFirstActive)

if ray[previousFirstActive] intersectsnode
returnpreviousFirstActive

if frustummissesnode returnN
for rays[previousFirstActive..N− 1]

if ray intersectsnode
return ray index

function Traverse(rays[N])

node← root

firstActive← 0

do
firstActive = FindFirst(ray,node, firstActive)
if firstActive < N

if !node.isleaf
push firstActive, farchild
node← nearchild

continue
else

IntersectTriangles(node)

if stack empty return
popnode, firstActive

2. Trivial reject: when the node is outside the frustum that bounds the rays in
the packet;

3. Brute force scan: if all else fails, the rays in the packet are tested individually,
starting with the first active ray.

Note that this traversal scheme requires planes that bound the frustum.
The traversal scheme is shown in algorithm 2.6.
In their 2008 paper, Overbeck et al. refer to algorithm 2.6 as ranged traversal,

referring to the division of active and inactive rays: all rays up until the first active
ray are ’inactive’, while all subsequent rays are ’active’. Whether this division is
effective on average depends on the ray distribution. This is illustrated in figure 12a.
The group of rays arriving at the leaf containing triangle B is optimally identified
by the first active ray 2. If this node where further partitioned, the set would
likely become smaller, but not fragmented. This is not the case when the ray
distribution is random (figure 12b). Even though only two rays (2 and 7) reach the
node containing triangle C, six rays would traverse further if the node was further
partitioned.

To improve ray tracing performance for ray distributions for which ranged
traversal performs poorly, Overbeck et al. propose an alternative scheme, which

27

Figure 12: Two ray distributions traversing a BVH. On the left, the highly coherent and
ordered ray distribution which is typical for primary rays. On the right, a ray
distribution after a diffuse bounce on scene triangle A.

Algorithm 2.7 In-place sorting of the indices of active and inactive rays in the
partition traversal scheme. N is the number of rays in the ray packet.
function FindFirst(rays[N], rayIndices[N], node, previousFirstInactive)

if frustummissesnode returnN
firstInactive← 0

for i = 0 to previousFirstInactive
if ray[rayIndex[i]] intersectsnode

swap rayIndex[firstInactive++], rayIndex[i]
return firstInactive

explicitly partitions the set of rays in an active and inactive set. They refer to
this scheme as partition traversal. The main component of this algorithm sorts an
array of indices of active and inactive rays in-place during the intersection test, as
illustrated in algorithm 2.711.

MBVH Traversal

kD-tree and BVH traversal schemes are designed for ray packet traversal. For
divergent ray tasks, these schemes are not efficient. This led to recent investigation
of N-ary BVHs (or MBVHs), where N typically equals SIMD width [257, 60, 77].
Single ray traversal through an MBVH is conceptually identical to BVH traversal
(algorithm 2.8).

Using an N-ary BVH instead of a BVH has two advantages:

1. The acceleration structure has less nodes, which reduces the number of node
fetches from memory;

2. The bounding boxes of the child nodes can be intersected using SIMD code,
leveraging SIMD for single ray traversal.

The basic algorithm does not intersect a single MBVH node with multiple rays, as
is done in ray packet traversal schemes for the kD-tree and BVH. Tsakok proposed
a scheme that does this [237]. His scheme improves data locality when some

11 For efficiency reasons, partition traversal as described by Overbeck et al. operates on ’SIMD rays’,
which is a group of N rays, where N is the SIMD width.

28

Algorithm 2.8 MBVH traversal loop.
while stacknot empty

if not leaf
for each child

if ray intersects child
push child

else
intersect primitives in leaf

pop

Algorithm 2.9 MBVH/RS traversal.
taskStack← (root, 0,N)

for rayID = 0 toN− 1

activeRayStack[0]← rayID

while not taskStack.Empty()
task← taskStack.Pop()
list← activeRayStack[task.lane].Pop(task.rays)
if not task.node.IsLeaf()

active[4] = {0, 0, 0, 0}
for each rayID in task.list

result[4]← Intersect4(rays[rayID], task.node)
active[4]← active[4] + result.hit
for i = 0 to 3 if result[i].hit

activeRayStack[i].Push(rayID)

for i = 0 to 3 ifactive[i] > 0
taskStack.Push(task.node.child[i], i,active[i])

else
for each rayID in list

for each triangle innode.triangles
intersect(triangle, ray[rayID])

coherence is available, and amortizes the cost of fetching an MBVH node over all
the rays in a stream. It falls back to efficient single ray traversal when the size of a
stream drops to one. We discuss this scheme in more detail here, since we will use
it later in the RayGrid scheme, described in chapter 5.

The MBVH/RS scheme is outlined in algorithm 2.9. MBVH/RS operates on an
array of rays. It uses two types of stack: the first is a set of four stacks (one for
each SIMD lane), which stores streams of active rays. The second stack is the task
stack, which stores tasks consisting of a number of rays and a node pointer. In the
traversal loop, a task is obtained from the task stack. The rays in the task are then
intersected with four child nodes. When a ray intersects a child node, it is added
to the stream of active rays for that node. Once all rays have been processed, a new
task is added to the task stack for each output stream that received at least one ray.

29

Algorithm 2.10 Efficient sorting of the four values in a 128-bit register. Variable v0

contains the values to be sorted. At the end of this code, v0 contains the sorted
values. The lowest two bits of v0 contain the original index of each value. This code
uses 15 SSE instructions to sort the numbers, and contains no conditional code.
Note that the sorted numbers are modified: the lowest two bits of the mantissa are
sacrificed. This does not affect the sorting order.

1 // values in idxmask4 are s e t to 0 x f f f f f f f c
2 // values in idxadd4 are s e t to { 0 , 1 , 2 , 3 }
3 __m128 v 1 , v 2 , v 3 , t ;
4 v0 = _mm_ or _ps (_mm_and_ps (v 0 , idxmask4 (mult icore CPU + GPU)) , idxadd4

) ;
5 v1 = _mm_movelh_ps (v 1 , v0) ;
6 t = v 0 ;
7 v0 = _mm_min_ps (v 0 , v1) , v1 = _mm_max_ps (v 1 , t) ;
8 v0 = _mm_movehl_ps (v 0 , v1) ;
9 v1 = _mm_ s h u f f l e _ps (v 1 , v 0 , 0x88) ;

10 t = v 0 ;
11 v0 = _mm_min_ps (v 0 , v1) , v1 = _mm_max_ps (v 1 , t) ;
12 v2 = _mm_movehl_ps (v 2 , v1) ;
13 v3 = v 0 ;
14 t = v 2 ;
15 v2 = _mm_min_ps (v 2 , v3) , v3 = _mm_max_ps (v 3 , t) ;
16 v0 = _mm_ s h u f f l e _ps (_mm_movelh_ps (v 1 , v3) , _mm_ s h u f f l e _ps (v 0 , v 2 , 0x

13) , 0x2d) ;

Adding intersected nodes to the task stack can either be done in random order,
or sorted. Although a strict front-to-back traversal order cannot be guaranteed
for a stream of rays, some ordering is beneficial, as it increases the number of
nodesthat are beyond the closest intersection distance. In the MBVH/RS scheme,
the distances at which rays hit the nodes are summed. The nodes are then sorted
according to this summed distance.

The implementation of the sorting requires careful attention, as a poor imple-
mentation can easily nullify the gains. We base our implementation on the work by
Furtak et al. [84], who describe an efficient SIMD implementation of a 4-element
sorting network for floating point values in a 128-bit register. We modify their
implementation to allow the sorting of MBVH nodes based on the four distances,
rather than the distances themselves. For this, we store the original node indices
in the lowest two bits of the four floats, prior to sorting them. After sorting, we
then extract these indices for the final ordering of the nodes. Our implementation
is shown in listing 2.10.

The described algorithm can be efficiently implemented using the SSE2 instruc-
tion set. A full implementation is provided in appendix C.

30

2.3 optimizing time to image

In the previous subsections, we discussed acceleration structures and acceleration
structure traversal for efficient ray / scene intersection. When using a hierarchical
acceleration structure, the cost of ray traversal for N primitives is O(logN). This
does not take into account the cost of precalculations however. Construction time
for an acceleration structure is O(N) at best for a regular grid, or O(N log N)

for hierarchical structures. In an interactive context, this construction time can be
considerable, even for moderately complex scenes. For a static scene, this cost is
amortized over many frames. In the context of a game however, the scene is often
dynamic, and rendering time therefore must include acceleration construction or
maintenance. Wächter refers to the total of acceleration structure maintenance plus
rendering time as time to image (TTI). This terminology was later adopted by others
[242, 256, 202].

Ray tracing of dynamic scenes was mentioned as early as 1999, by Parker et
al., who propose to keep dynamic objects outside the acceleration structure and
intersect them separately [184]. Similarly, Bikker proposed to use a secondary
acceleration structure for dynamic objects [27]. Wald et al. propose to refit the
BVH for deformable scenes [254]. Ize et al. propose to refit and rebuild the BVH
asynchronously [116]. A full solution was proposed by Wald et al. and implemented
in the Arauna ray tracer. A top-level BVH is constructed over per-object BVHs,
which are either static, rebuilt or refitted (see section 3.2). Several authors assume
that games ideally should be able to use fully dynamic environments [82], but
this is generally not needed: most games only require a small portion of the game
world to be dynamic [256, 27].

When optimizing TTI for a specific rendering algorithm and application, we
must take into account the expected scene complexity, the extent to which the
scene is dynamic, and the expected summed ray query time. When the portion of
the TTI spent on updating the acceleration structure is relatively large, it becomes
attractive to reduce this portion, even if this leads to a decrease in ray query
performance. This has led to the development of very fast BVH and kD-tree
construction algorithms, that sacrifice some quality for build performance, by
using a median split [242] or an approximation of the SAH using an approximation
of the cost function [111] or a fixed number of discrete split plane candidates
(known as binning) [245]. Acceleration structure construction can also be improved
by leveraging the compute power of the GPU [276, 126, 146, 182]. Construction of
the acceleration structure can be sped up further by using regular grids [253]. This
has a considerable impact on ray query performance however, and is thus only
worthwhile when TTI is strongly dominated by acceleration structure updates.

When TTI is dominated by ray queries, it is important to have a high-quality
acceleration structure. A high-quality kD-tree or BVH is obtained using the SAH.
Further improvements for BVHs can be realized when using spatial splits [226]
and agglomerative construction [262]. Once the BVH is constructed, its total SAH
cost can be reduced using tree rotations [137].

31

2.4 definition of real-time

In this thesis, we frequently describe a performance level as real-time. In computer
science, a system is considered real-time if it can guarantee a response to an event
within a certain amount of time [20]. In the context of graphics for (multicore CPU
+ GPU)games, real-time can be interpreted in the perceptual sense [130]: a certain
frame rate can be considered real-time if the application response to user input is
perceived as instantaneous [98], or if the human eye perceives the depicted motion
as continuous. In graphics literature, real-time is an abstract interval, defined by
a certain minimum frame rate. Related to real-time is interactive. A frame rate
is interactive when frame updates are fast enough to allow the user to operate
directly on the rendered image.

Multiple factors determine whether real-time frame rates can be achieved, such
as the available hardware, the complexity of the scene, and the rendering quality.

Modern games are typically designed for a broad range of hardware configura-
tions. There are two distinct ways for a renderer to keep within real-time limits.
The first is to scale the workload dynamically to enforce a real-time frame rate. The
second is to rely on the user to specify rendering features and resolution for which
the input data can typically be rendered at real-time frame rates.

There exist several approaches that allow a renderer to scale the workload dy-
namically. One such approach is referred to as level of detail (LOD), as originally
proposed by Clark [46]. LOD decouples scene complexity from rendering complex-
ity. It can be implemented using manually crafted meshes of varying complexity, or
using dynamically generated meshes [271, 75, 149]. Duchaineau et al. apply LOD to
large terrain meshes in their ROAM algorithm [71], based on the CLOD algorithm
proposed by Lindstrom et al. [151]. The appropriate LOD is commonly chosen
based by comparing an estimated or calculated maximum error to a user-specified
error threshold. Image fidelity can be traded for rendering performance by tuning
this threshold. Olano et al. propose to apply a similar mechanic to shaders, by au-
tomatically simplifying a shader based on distance, size, importance or rendering
time budget [176].

Scene complexity is one parameter that affects rendering performance, although
ray tracing is less dependent on scene complexity compared to rasterization, as it
only visits a subset of all objects once the acceleration structure is built. Another pa-
rameter is screen resolution. Binks proposes to make rendering resolution dynamic
[30].

Although several methods exist to adjust rendering speed dynamically, in prac-
tice, real-time rendering in games is often achieved by providing scene data that
will not exceed the capabilities of the renderer. Achieving real-time performance is
at least partially the responsibility of the visual artist, who must make sure that for
all possible camera views, visible polygon budgets are not exceeded. Assuming
high-quality scene data, real-time performance then becomes the responsibility of
the end user, who manually selects rendering options and screen resolution. The
three most popular rendering engines for games (ID Tech 5 [44], Unreal Engine

32

3 [229], Unity 3D [10]) all scale with system performance, and require manual
feature and detail selection.

For the purpose of this thesis, we assume that a renderer is real-time when there
exists a commodity hardware configuration on which the renderer can achieve an
average frame rate of 20fps, and never drops below 15fps, for typical input data.
For the Whitted-style ray tracer described in chapter 3 and 4, we will show that
this can be achieved. For the path tracer described in chapter 5, 6 and 7, we will
dynamically scale the number of samples per pixel, trading variance for rendering
speed.

2.5 overview of thesis

In the following chapters, we build on the concepts described in this chapter.
The Arauna ray tracer (chapter 3) implements the recursive ray tracing algorithm

proposed by Whitted, embedded in a complete ray tracing based renderer, designed
for games. The proposed architecture is able to render scenes that fit in main
memory, at real-time frame rates. A secondary acceleration structure is constructed
over the light sources, to allow for efficient rendering of scenes with large amounts
of point lights. Illumination is limited to direct lighting however.

Chapter 4 describes an approach to add sparsely sampled indirect illumination
to the Whitted-style ray tracer. By decoupling shading calculations from rendering,
we exploit temporal and spatial coherence in low-frequent indirect illumination, as
well as direct illumination from large area light sources. The proposed precalculated
pointset adapts to local geometry, can be efficiently queried, and does not suffer
from aliasing or temporal low-frequent noise. Being precalculated, it does however
assume static geometry.

In the subsequent chapters, we seek to alleviate the limitations of Whitted-style
ray tracing by implementing the path tracing algorithm. Efficiently doing so is
challenging: in path tracing there is a lack of coherence between object data and
ray queries. As a result, caching hardware is not as efficient as with Whitted-style
ray tracing.

We study the problem of efficient path tracing, first on the CPU (chapter 5). We
propose a data-parallel algorithm that improves data locality for divergent ray
queries. We also study the efficiency of divergent ray traversal on the GPU (chapter
6). On these streaming processors, efficiency is determined mostly by execution
coherence and utilization of the many hardware threads of these devices. We
propose algorithms that improve coherence and utilization, and study the impact
of these algorithms on variance.

Finally, in chapter 7 we describe the Brigade path tracing architecture, which
provides unbiased rendering for games. In this renderer, variance is traded for
rendering speed to achieve real-time performance.

33

Part I

R E A L - T I M E R AY T R A C I N G

3
R E A L - T I M E R AY T R A C I N G

The significance of ray tracing for games has been pointed out by several au-
thors1[177, 244, 82, 193]. For gamers, ray tracing promises higher levels of realism.
Game developers are attracted by efficient game production, intuitive rendering
and reduced code complexity, as well as a content creation pipeline that more
closely resembles those used for movie production. As shown in the previous
chapter, rendering algorithms based on ray tracing support a number of important
terms of the rendering equation which are not easily handled by rasterization-
based rendering. This allows for correct shadows in an Appel-style ray tracer
[11], specular reflection and transmission in a Whitted-style ray tracer [265], glossy
reflections and soft shadows in a distribution ray tracer [51] and global illumination
in a path tracer [125].

Despite these benefits, ray tracing has so far not been widely adopted for
game development. Adoption is held back by dedicated rasterization hardware,
rasterization-based legacy code and performance concerns, but also a lack of proof-
of-concept games and rendering engines that could alleviate these concerns. To
gain more insight in the actual benefits of ray tracing, the implementation of a
fast ray tracing based renderer, and the use of it in actual games, is desired. A
well-optimized implementation also provides a valuable tool for researchers who
wish to investigate new algorithms in a practical context.

In this chapter, we describe the Arauna ray tracer. This renderer implements the
Whitted-style ray tracing algorithm, with some small modifications specifically
designed for games. Its practical implementation also explicitly targets this context,
with a fast fixed-function pipeline, an emphasis on low-level optimization, and
architecture decisions that target real-time rendering of typical game scenery.

3.1 context

The Arauna ray tracer is designed to be a rendering engine for games. This focus
brings a number of requirements that affect various components of the renderer.

real-time Games require real-time rendering. This limits frame time to tens of
milliseconds, and makes low-level optimization a necessity. Shading qual-
ity, screen resolution and scene complexity must be balanced to meet this
requirement.

standard pcs For a valid proof-of-concept renderer, a broad audience must be
able to run games produced using the renderer. It is not uncommon for a

1 This chapter is based on the RT’07 keynote speech "Ray Tracing through the Eyes of a Game
Developer", and the accompanying paper [27].

37

game to require high-end ’off-the-shelf’ hardware, equipped with a recent
CPU and GPU; we therefore target high-end consumer hardware. To make
optimal use of the available hardware, the ray tracer uses both high-level
parallelism and instruction level parallelism, in order to keep all SIMD units
of all CPU cores busy.

resolution Games are generally played at resolutions of at least 1280x720. The
ray tracer is designed for this target resolution, even when a proof-of-concept
game uses a lower resolution, in anticipation of sufficient compute power.

image fidelity Image quality competes with (and must ultimately surpass) ras-
terization based solutions. The ray tracer is able to render scenes with a
detail level and material complexity similar to what is used in current games.
When necessary or opportune, believable rather than correct graphics are
acceptable.

dynamic world A game world is dynamic, although it is common practice to
assume that a substantial part of it is static. It may be assumed that the game
world is managed using a scene graph. The ray tracer strives for an optimal
Time To Image (TTI, see chapter 2) for this type of scenery.

Arauna aims to implement an efficient combination of acceleration structure con-
struction and maintenance, ray traversal, primitive intersection, and shading, aim-
ing for an optimal time to image. This section describes each of these elements in
more detail.

We conducted our experiments using three scenes. The first scene (figure 13a)
is a scene from the student game Let there be Light, and consists of 88k triangles,
with textures and normal maps. This scene is considered representative for a game
scenario. The second one (figure 13b) is the standard architecture model of the
Sponza Atrium, by Marko Dabrovic. This model includes consists of 93k triangles,
and is included for comparison with existing work. The third scene (figure 13c) is
the Sibenik Cathedral, also modeled by Marko Dabrovic. We added a low-polygon
version of the Lucy model from the Stanford repository, which brings the polygon
count in this scene to 602k. The majority of these polygons are clustered in a small
area of the scene. We will use these scenes throughout this thesis.

3.2 acceleration structure

Most games use a scene graph to store the object hierarchy and spatial relations
between objects in the scene. This scene graph contains valuable information which
can be used to improve construction efficiency as well as quality of an acceleration
structure [67]. This information can be exploited in two ways. First, the object
bounding box planes provide good candidates for split planes near the root of
a kD-tree or BVH. The cost of these initial splits can be dramatically reduced by
considering only these planes. Secondly, for a BVH we can construct a BVH for

38

Figure 13: Scenes used for our experiments: Modern Room from Let there be Light, the Sponza
Atrium, and the Lucy statue in a model of the Sibenik Cathedral.

Algorithm 3.1 Updating the scene graph. A BVH per scene graph node is rebuilt
or refitted for changed objects.
for eachnode in scenegraph

if notnode.IsSatic()
node.Transform()

ifnode.Changed()
ifnode.IsRigid() |node.IsDeforming()

node.Refit()
else / ∗ ifnode.IsDynamic() ∗ /

node.rebuild()
scene.buildtopbvh(scenegraph)

each scene graph node. The scene BVH is then constructed using a top-level BVH
over the scene graph node BVHs.

Arauna uses this second method to construct a BVH. During construction, prop-
erties of the scene graph nodes are used to balance BVH quality and construction
performance. Arauna distinguishes static and dynamic objects. For static objects, a
scene graph node BVH is constructed once, after which it no longer contributes to
frame time. The construction can therefore use a high-quality BVH construction
algorithm. Dynamic objects are further classified into rigid, deforming and dy-
namic. Rigid objects will undergo rigid translation and transformation. The BVHs
for these objects do not need reconstruction. Instead, the bounding volumes stored
in the nodes of the BVH are refitted to the primitives stored in the leafs. Deforming
objects change shape but have a constant polygon count and topology. Dynamic
objects undergo arbitrary changes, including addition and deletion of polygons
and changes to topology. For these objects, the scene graph node BVH must be
rebuilt per frame. Construction speed is important for these BVHs. A faster scheme
is therefore used, yielding a lower quality BVH.

Algorithm 3.1 outlines the scene graph update.
Constructing a BVH per scene graph node allows for object-specific BVH con-

struction.

39

Figure 14: Constructing the top-level BVH. Scene graph node BVHs are constructed using
node-specific construction algorithms, and then combined until one root node
combines them.

For static objects, we use a high quality BVH builder, which uses the surface
area heuristic to determine the optimal split plane position. Our implementation
uses a binning approach, where the extent of the bounding box for each axis is
subdivided in N+ 1 discrete regions, separated by N planes. By choosing N to
be a multiple of 4, SIMD can be used to increase efficiency of BVH construction,
without sacrificing BVH quality. The value of N can then be used to balance quality
and construction performance. For a large N, quality improves, but construction
time increases. At each separating plane, we consider a spatial split, as proposed
by Stich et al. [226].

For dynamic objects, we use a similar BVH builder, with a number of simplifica-
tions that reduce construction time. The high-speed builder does not consider the
spatial split, and uses a small value for N. It also limits the search for the best split
plane to the axis for which the bounding box has the greatest extent. Although this
yields a lower quality BVH, in practice this improves TTI. Dynamic object BVHs
are typically traversed by a relatively small number of rays. The reduced efficiency
of these rays does not outweigh the gains in construction time.

Rigid objects that changed position or orientation reuse the BVH from the
previous frame. This BVH is refitted by adjusting the bounding box of each node
to the primitives in the node (for leafs) or to the bounds of the child nodes (for
interior nodes). Since interior nodes rely on up-to-date bounds of their child nodes,
this process must be executed in a bottom-up fashion, using a recursive algorithm.
Alternatively, the array of BVH nodes can be refitted back-to-front. Assuming that the
nodes in the array were allocated in a top-down fashion during BVH construction,
each node in the array is guaranteed to be either a leaf node, or lower in the
hierarchy than the previous node. In practice, the back-to-front approach is simpler,
but not faster than the recursive algorithm, due to the poor memory access pattern.

Table 1 shows timing information for BVH construction and refitting. Refitting
takes far less time than rebuilding, but rebuilding benefits more from multi-
threaded processing.

Once all scene graph nodes have been updated, a new top level BVH is con-
structed. For this, we use the agglomerative algorithm described by Walter et al.

40

tris 1 thread 4 threads

tris rebuild refit rebuild refit

44k 35.4 2.3 8.4 1.6

88k 76.5 7.1 19.5 4.0

388k 397.0 35.7 103.9 19.9

Table 1: BVH construction and refitting time in milliseconds for a group of 4 objects, with
a combined triangle count of 44k, 88k and 388k triangles, using 1 thread and 4

threads.

Figure 15: Scenes from the student game Pirates on the Edge.

[262] (figure 14). During each iteration of this algorithm, two nearby scene graph
node BVHs are combined into one BVH, by creating a new node, and linking the
two BVHs to it as child nodes. The bounding volume of the new node becomes the
union of the bounding volumes of the two linked BVHs. The new node is now a
valid root node for the two BVHs, and will be combined with other scene graph
node BVHs in subsequent iterations, until one node remains.

The resulting scene update is highly efficient. For a simple static scene, most
steps are skipped, which makes overhead negligible. For typical game scenes, the
blend of static, rigid and dynamic objects is effectively exploited. We have applied
this approach to render the world of the student game Pirates on the Edge (see figure
15). This game features a static world of 363k triangles, an animated ocean with
simulated waves consisting of over 129k triangles, and several pirate ships of 7k
triangles, each undergoing rigid motion. A maximum of 512 cannonballs may be
in flight at any time during the game; these are rendered using a single reflective
sphere primitive.

41

3.3 ray traversal implementation

In the previous paragraph, we described the construction of the top-level BVH.
The BVH is traversed by ray packets. Arauna uses the traversal scheme proposed
by Wald et al. [254] for primary and secondary rays (see section 2.2).

For each visited BVH node, the ranged traversal scheme uses at most three tests:

1. early hit: if the first active ray in the packet intersects the BVH node, the
packet traverses the node;

2. early miss: if the BVH node is outside one of the bounding planes of the
packet, the BVH node is skipped;

3. brute force scan: the first ray that intersects the BVH node is searched by
testing all active rays against the BVH node.

This algorithm allows traversal of BVH nodes at the cost of a single ray/box test,
if condition 1 is met. An additional AABB/frustum test must be performed if
condition 1 fails. The first two tests are independent of packet size. The third test
is not: in a worst case scenario, where all rays miss the BVH node, each ray is
tested against the AABB. Similarly, when processing a leaf, a range of rays is tested
against primitives. To reduce this cost, the basic algorithm is augmented with a
number of low-level modifications that further improve performance.

Packet Layout

The layout of a packet is carefully chosen. Arauna uses 16x16 rays in a primary
ray packet, which has been empirically found to be a good size for primary ray
packets. Of these 256 rays, the first 64 rays form the first quadrant of the packet (see
figure 16). Using this ordering, the packet can be trivially split in four 8x8 packets,
which is a better size for secondary rays. After the primary intersection, traversal
continues with these 8x8 packets. Within a quadrant of the packet, rays are laid
out as 2x2 squares of rays. The 2x2 squares increase ray coherency within a SIMD
ray packet of four rays. This increases the probability that four rays traverse the
same BVH nodes and hit the same primitive, resulting in more efficient primitive
intersection and shading.

Sub-frusta

For a primary ray packet, two extra planes are added. These planes subdivide the
frustum in four quadrants or sub-frusta, each of which contains 64 rays. When
processing a leaf, each primitive is first tested against the frustum of the packet. If
the primitive is not outside the frustum, it is tested against the two extra planes, to
determine which quadrants the primitive potentially intersects. This way, sets of
64 rays that are guaranteed to miss the primitive are not tested. The active rays in
each quadrant are then tested in groups of four, using a SIMD implementation of
the modified Pluecker test proposed by Benthin [21].

42

Figure 16: 16x16 packet layout.

Shadow Rays

Shadow rays in Arauna are generated per light source, once packet traversal for
primary or secondary rays has completed. The shadow ray packet contains a
shadow ray for each intersection point. If no intersection point was found, or if the
intersection point did not require a shadow ray (e.g., when a specular material was
encountered), the shadow ray is deactivated. The shadow rays start at the point
light source, and extend to the intersection point. Note that shadow ray direction is
important: when tracing from the intersection point to the light source, occlusion
may be missed when a primary or secondary intersection point is on an edge of a
shadowed polygon.

To prevent self-shadowing for intersection points, we use a small epsilon value.

Secondary Rays

Packets for primary rays and shadow rays use a common origin for all rays. For
secondary rays, such as reflected and refracted rays, this property is typically lost.
For these rays, we switch to a more generic triangle intersection test.

3.4 divergence

We measured the performance of our ray traversal implementation. Since perfor-
mance is sensitive to ray divergence, we measured performance for various levels
of divergence.

The test setup is as follows: for the three test scenes, three camera views are
chosen, with varying occlusion and complexity levels. To minimize shading cost,
visualization is limited to depth information. Four levels of divergence are then
tested. For an objective measurement, the four levels all consist of primary rays with
a common ray origin. Divergence is increased by increasing the angle between the
rays in a tile. For divergence levels beyond 1, the tiles thus appear to overlap. Using
this approach, all divergence levels access the same geometry (except for the right
column and bottom row of tiles). Table 2 shows the impact of ray divergence in
the Sponza scene for three viewpoints. Table 3 shows the impact of ray divergence

43

divergence

1 19.49 (100%) 22.12 (100%) 19.01 (100%)

2 13.59 (70%) 17.01 (77%) 15.06 (79%)

4 8.20 (42%) 11.40 (52%) 10.03 (53%)

8 4.42 (23%) 6.56 (30%) 5.66 (30%)

Table 2: Ray packet performance, in millions of rays per second, for three views of the
Modern Room scene and various levels of divergence. Divergence is in multiples
of 0.034 degrees between adjacent rays.

divergence

1 16.85 (100%) 25.11 (100%) 18.44 (100%)

2 11.61 (69%) 18.83 (75%) 12.93 (70%)

4 6.98 (41%) 12.56 (50%) 7.48 (41%)

8 3.85 (23%) 7.71 (31%) 3.87 (21%)

Table 3: Ray packet performance for three views of the Sponza Atrium.

in the Escher scene. Measurements are performed on a single core of a Intel Xeon
processor running at 3.4 Ghz, at a resolution of 1280x800.

It is clear that even for primary rays, ray divergence considerably affects traversal
efficiency. The adverse effect depends on the angle between rays, but also on scene
complexity. Note that the angle decreases when resolution increases (assuming the
field of view remains constant). As mentioned by Wald in his Ph.D. thesis, packet
ray tracing performance thus does not linearly scale with screen resolution [244].

3.5 multi-threaded rendering

Ray tracing is known to be an “embarrassingly parallel algorithm” [163], since rays
for individual pixels do not depend on each other’s data and can thus be traced
in any order. In practice, a thread granularity of one pixel is inefficient, due to
operating system task synchronization overhead. Instead, the workload is split in
tiles of pixels, which correspond to the ray packets described in section 3.3. The
tiles are placed on a stack by a master thread, and then processed by one or more
rendering threads, using a lock-free, wait-free scheme. One rendering thread is

44

divergence

1 14.30 (100%) 9.20 (100%) 10.30 (100%)

2 10.13 (71%) 5.19 (56%) 5.78 (56%)

4 6.30 (44%) 2.46 (27%) 3.36 (33%)

8 3.70 (26%) 1.29 (14%) 2.13 (21%)

Table 4: Ray packet performance for three views of Sibenik Cathedral with Lucy.

started for (and locked to) each available physical processor core. A rendering
thread executes the code shown in algorithm 3.2.

The rendering thread thus sleeps until it receives a signal from the master thread.
At this point, it obtains a rendering task, and renders it. Since all render threads use
the same task list, special care must be taken to prevent threads from rendering the
same tile, or invalid tile numbers (e.g., -1). For this, an atomic decrement is used
(line 8). As it is possible that variable waiting changed between the conditional
on line 6 and the atomic decrement on line 8, the obtained value is checked again
on line 9. Once no tiles are left to be rendered, the rendering thread notifies the
master thread, which wakes up once all rendering threads have run out of work.

In this scheme, the only OS-dependent synchronization happens at line 3 and 13,
which are both executed once per frame. Another potential inefficiency is the task
granularity: it is possible that a rendering thread starts working on a tile at the
same time that all other rendering threads finish their tiles. In that case, rendering
is essentially single-threaded for a moment. The impact on rendering efficiency
depends on the ratio of tiles to rendering threads, as well as the cost of the final
tile: on a many-core architecture, it is important to have many small tiles to reduce
this effect.

3.6 shading pipeline

Arauna uses a fixed-function pipeline, and implements the Phong reflection model
[189], augmented with an emissive component and a geometry factor:

Ip =ke + kaia +
∑

m∈lights
Gm(kd(Lm ·N)id + ks(Rm · V)αis) (3.1)

In this formulation, ke is the emissive color of the material, ka, kd and ks denote
the ambient, diffuse and specular reflection constants for a material, and α is the
shininess constant. Lighting is defined by the diffuse component id, the specular

45

Algorithm 3.2 Code for a lock-free, wait-free processing loop for a rendering
thread.

1 while (1)

2 {

3 WaitForSignal(goSignal[threadIdx], INFINITE);

4 while (1)

5 {

6 if (waiting > 0)

7 {

8 volatile LONG w = AtomicDecrement(&waiting);

9 if (w >= 0) RenderTile(w);

10 }

11 else

12 {

13 Signal(doneSignal[threadIdx]);

14 break;

15 }

16 }

17 }

component is, and the ambient lighting ia. Like in most implementations, the
Phong reflectance model is evaluated for red, green and blue. On a four-wide
SIMD architecture, it is tempting to use vector operations to operate on 128-bit
colors, using 32-bit floats for alpha, red, green, blue. In practice however, this leads
to inefficient SSE code; it is much more efficient to operate on four rays in parallel
instead.

In the shading pipeline, we perform the following steps:

1. obtain the diffuse material color by sampling the (HDR or 32-bit) texture, or
the diffuse color of the material

2. obtain the per-pixel normal by sampling the normal map of the material (if
available)

3. calculate the surface normal by combining the interpolated surface normal
and the per-pixel normal

4. determine visibility of each relevant light source

5. evaluate the Phong model.

In our implementation, two optimizations are performed to optimize the through-
put of the shading pipeline. The first is to minimize the time spent in code that
cannot be executed for four rays in parallel. The second is to interleave texture
data and normal map data, to reduce the number of cache misses during texture
fetches.

46

Consistent SIMD Shading

By executing the shading pipeline for four rays in parallel, maximum SIMD
efficiency is achieved. Arauna evaluates the Phong model for four rays in parallel
using SIMD in the same manner as the model would be evaluated using scalar code
for a single ray: the color components red, green and blue are calculated separately.
A simple color addition would be implemented using a SIMD instruction that
operates on the red components of four rays, followed by an instruction that
operates on the green components of these rays, and finally an instruction for the
blue components. The data layout that is required for this is known as structure
of arrays (SoA). Reorganizing texture data from array of structure (AoS) format to
SoA is done during the gather operations in steps 1 and 2, where 128-bit SIMD
registers are filled with the diffuse color of the material, obtained from the texture
map. Normals are processed in the same way.

At the end of the shading pipeline, colors for four rays are converted from SoA
RRRR,GGGG,BBBB to four 32-bit integer ARGB results. The overhead of converting
to and from SoA is worthwhile: despite the overhead, the shading pipeline executes
more than four times faster than the same pipeline in scalar code. The expected
limit of 400% is exceeded as a result of the availability of certain SIMD instructions
that operate faster on four elements than a corresponding scalar instruction on
a single element. Besides this, SIMD allows simple conditional constructs to be
converted to branch-free code, which prevents expensive branch mispredictions
present in the scalar code.

Consistent use in SIMD code of data organized in a SoA fashion yields efficient
and maintainable code, that is easily extended to larger SIMD widths.

Interleaved Normal Map

During the gather operation in steps 1 and 2, cache misses are a significant source
of delays. Little can be done to avoid these, apart from tracing coherent packets
and deliberate oversampling. However, for every cache miss in the texture data,
a cache miss in the normal map data is very likely to occur as well. This can be
prevented by interleaving texture data and normal map data. This way, reading
the texel also stores the normal in L1 cache, which can then be read without any
penalty. This reduces the cost of normal mapping significantly, to the point where
the use of normal mapping is essentially free 2. A consequence of this approach is
that the normal map must be the same resolution as the texture map.

3.7 many lights

The most expensive part of the shading pipeline is the visibility determination
for light sources. For a typical game scene, tens or even hundreds of lights are
required. Since each light potentially affects every point in the scene proportional

2 When using normal mapping on every surface, the overall impact is 1.5%.

47

Figure 17: Various lighting models. Dotted red: linear fall-off; blue: quadratic + linear
fall-off; solid green: quadratic fall-off (for reference).

Figure 18: Light spot shapes: a) Linear fall-off. b) Quadratic + linear fall-off. c) Quadratic
fall-off (for reference).

to 1
r2

, tracing shadow rays can easily become a bottleneck. To reduce the impact
that a large number of light sources has on frame rate, Arauna uses a simplified
fall-off model for lights, where lights have a limited sphere of influence.

Quadratic fall-off is approximated as:

f(r) =max(0,
1

αr2
−βr) (3.2)

where α is a value close to one, and β is a small positive value. A positive
value for β ensures that the function reaches 0 at distance r = 1/(3

√
α 3
√
β). Figure

17 shows the graphs for quadratic fall-off, linear fall-off and the approximation
of equation 3.2. Note how quadratic fall-off has an infinite sphere of influence,
whereas both approximations have a finite range. Figure 18 shows the shape of the
light spots.

The approximation of equation 3.2 approximates the original shape reasonably
well, and allows us to discard lights that are too far away, reducing the total number
of lights that affects a single point in the scene.

Determining the set of lights that affects a point can still become a bottleneck
if it is implemented as a loop over all light sources and a distance calculation per
light source. For this reason, besides the BVH for the scene primitives, a second
BVH is used, which stores the lights in the scene. The light BVH is constructed
once per frame, in an agglomerative fashion. Pairs of lights are grouped in an
enclosing sphere, until the top level of the BVH is reached, which is a single

48

Figure 19: Scenes from the student game Time of Light.

sphere, containing all the light sources in the scene. The light sources that affect an
intersection point can now be quickly determined by traversing the BVH.

Our approach is similar to the approach proposed by Schmittler et al. [209],
who use a kD-tree. Using a BVH solves problems with the subdivision heuristic:
Sometimes, lights overlap significantly, in which case it is hard to find a good split
plane position. Also, the box shape of kD-tree nodes does not match the sphere
of influence of a light well, which leads to considerable overhead for points that
will not be lit by a light, yet are in a leaf node containing the light. Spherical BVH
nodes by nature enclose the light volumes tightly.

The approximation for fall-off and the light BVH have been used in the student
game Time of Light (see figure 19). In this pinball game, the scene consists of a
detailed table with 60 light sources, most of which are small. The average number
of lights that affects a point in the scene is less than 3.

3.8 performance

In this section, we present performance figures for the Arauna ray tracer. We
measured performance for the three scenes shown in figure 13. Measurements
are performed on a dual-processor system, using two six-core Xeon processors,
providing 24 cores (with hyperthreading) running at 3.4 Ghz. To stress the ray
tracer, we modified materials and added extra light sources. The Modern Room
scene is rendered using 12 light sources along the ceiling, all of which affect all
scene surface points. The Sponza scene uses 25 light sources. Most of these have a
small range of influence. The Sibenik Cathedral scene uses 4 light sources, all of
which affect the entire scene. All images are rendered at a resolution of 1280x720

pixels.
Table 5 shows performance when rendering using 1, 2, 6, 12 or 24 rendering

threads. Up to 12 cores, performance scales almost linearly. Beyond this point, the
use of hyperthreading results in a modest improvement of performance of about
20%. Peak performance is achieved in the Modern Room scene: for this scene, 549

million rays per second were traced. Note however that many of these are shadow
rays: each pixel requires 12 shadow rays.

For the three scenes, at a resolution of 1280x720, performance never drops below
20fps, and can thus be considered real-time.

49

cores fps mrays/s fps mrays/s fps mrays/s

1 1.62 35 1.74 37 2.27 38

2 3.24 70 3.47 74 4.52 75

6 9.77 211 10.34 221 13.45 225

12 18.57 328 19.12 420 26.85 448

24 23.70 506 25.10 534 33.22 549

rpp 23.93 23.62 18.40

cores fps mrays/s fps mrays/s fps mrays/s

1 5.22 25 4.08 31 3.43 28

2 10.31 51 8.09 63 6.80 56

6 30.1 151 24.29 188 20.02 168

12 59.37 297 48.02 365 39.36 331

24 74.91 379 51.98 394 46.60 398

rpp 5.50 8.25 9.23

cores fps mrays/s fps mrays/s fps mrays/s

1 1.71 18 2.09 19 2.06 18

2 3.27 35 4.23 35 4.08 35

6 9.78 106 12.17 101 12.47 108

12 19.28 207 24.29 200 24.23 213

24 25.1 269 31.2 258 30.5 263

rpp 11.87 9.13 9.56

Table 5: Absolute rendering performance in frames per second and millions of rays per
second for three scenes and three camera views per scene. Measured using 1, 2, 6,
12 and 24 rendering threads. The last row shows the average number of rays per
pixel. A single primary ray per pixel is used.

50

3.9 discussion

In this chapter, we described the Arauna ray tracer, which combines efficient accel-
eration structure maintenance and ray packet traversal for primary and secondary
rays. We proposed an alternative to quadratic fall-off for light sources that bounds
their radius of influence. By storing the light sources in a secondary BVH, the
lights that affect a surface point are efficiently determined during rendering. For
typical scenes, the light BVH can be reconstructed for each frame. We measured the
impact of divergence of rays in a packet, which allows us to compare the efficiency
of CPU ray tracing and GPU ray tracing, where this impact is much lower (see
chapter 6). We proposed a ray packet layout that allows efficient subdivision for
secondary ray traversal. The proposed layout maximizes coherence for rays that
are traced using the same vector operations. We proposed to interleave texture
data and normal map data. A texture fetch will always bring the corresponding
normal into L1 cache, which greatly reduces the cost of normal mapping, to the
point where this is essentially free. We presented a number of ray traced games,
and achieved real-time performance for these on modern CPUs.

The real-time performance of these games indicates that Whitted-style ray tracing
has reached the point where it is a viable technique for games. Although Whitted-
style ray tracing does not provide a full solution to the rendering equation, it is
far less restricted than rasterization: where rasterization has to revert to more or
less accurate approximations to global effects such as shadows and reflections,
Whitted-style ray tracing supports these elegantly.

The performance level of today’s mainstream PCs and the absence of mainstream
graphics hardware with support for the ray tracing algorithm necessitates careful
optimization of the ray tracing algorithm, both on a high level and on a low level.
Efforts in this regard have been very successful over the past decade. Optimizations
did lead to a reduction of generality however: where performance levels for coher-
ent primary rays and shadow rays benefited greatly, divergent ray distributions
are lagging behind. For this reason, reflections and refractions in Whitted-style ray
tracing only recently reached a performance level acceptable for games.

51

4
S PA R S E S A M P L I N G O F G L O B A L I L L U M I N AT I O N

In the previous chapter, we have described the Arauna real-time Whitted-style ray
tracer. We have shown that real-time ray tracing has reached a point where it has
become a viable option for rendering virtual worlds for games. For the field of
games, ray tracing promises an intuitive approach to rendering, making many of
the approximations used to augment rasterization unnecessary. Whitted-style ray
tracing enables correct visualization of shadows, reflections and refractions; these
are hard to do well using rasterization. Distribution ray tracing adds soft shadows
and glossy reflections, and retains low algorithmic complexity. With similar low
algorithmic complexity, path tracing enables full global illumination.

This elegance comes at a price however. Rendering based on ray tracing is well-
known for its high computational cost. Many features that are trivial to implement
in a ray tracer require a performance level that is not available on commodity
hardware, at least for now. The high cost of secondary effects and the almost linear
dependency of rendering time on the total number of rays force us to limit the use
of non-diffuse materials and complex illumination. While it is possible to augment
Whitted-style ray tracing with coarse approximations of complex secondary effects
similar to those used in rasterization-based rendering, we would rather not revert
to this approach, as it reintroduces restrictions and code complexity. Instead, we
propose to use approaches that converge to the correct solution, so that we can scale
up with future advances in hardware technology. One such approximation used for
low-frequent shading is the irradiance cache [264]. We propose a variation on this
algorithm, which makes it more suitable for real-time rendering in a multi-threaded
environment.

We use a three-stage scheme, which decouples shading calculations from actual
rendering. In a pre-process step, we build a static point set. Then, prior to rendering
each frame, we fill this set with shading information. Finally, during rendering, we
query this shading information using interpolation.

The presented scheme is an extension of earlier work [29].

4.1 previous work

Caching shading data is commonly used to enable real-time rendering of scenes
with complex lighting. Even when lighting for the scene is not static, caching can be
used to exploit temporal and spatial coherence of the (often low-frequent) shading
information.

In the context of rasterization, precalculated shading information is typically
linked to scene geometry. An early approach was vertex shading, where each
vertex of the mesh stores shading information. This shading information is then

53

reconstructed using bilinear interpolation (Gouraud shading, [95]) over the polygon.
Using this scheme, shading calculations are limited to vertex positions, and thus,
for most scenes, sparsely sampled. One disadvantage of this approach is that the
density of the samples is directly coupled to mesh resolution. Vertex shading was
implemented in hardware1 by SGI for the Nintendo 64 console [218], and used
extensively in games such as Super Mario 64 [160] and GoldenEye 007 [107].

Recording shading information in bitmaps allows decoupling sample density
from geometric resolution. Techniques that use this approach include shadow maps
[266, 199], illumination maps [12] and directional light maps [106]. Since these
techniques store samples on a raster, shading reconstruction suffers from aliasing
[6].

In the context of ray tracing, mesh-less schemes have been employed. Photon
mapping [121] uses the locations of particles that hit scene geometry. The density
of the photon map depends on the amount of incident light; areas that receive
little light also receive few photons. The irradiance cache [264] exploits the fact that
indirect light is typically low-frequent, and calculates samples with a density that
adapts to local scene complexity, as well as details in the lighting. Few samples
are created for areas with slowly varying illumination, while areas with high-
frequent details receive many samples. The samples are created on the fly. In a
multi-threaded environment, this leads to excessive synchronization. Neither the
photon map nor the irradiance cache target real-time performance.

A recent paper by Lehtinen et al. [148] describes a mesh-less approach using
a precalculated point set. Their scheme is designed for GPUs, and relies on a
hierarchical point set with a high density, rather than adaptive density. Furthermore,
their scheme targets precomputed light transport (PRT, [220]) rather than direct
storage of irradiance.

4.2 the irradiance cache

Since our scheme bears significant resemblance to the irradiance cache, we will
discuss this approach in more detail.

The irradiance cache was first used in the Radiance system, which is a physically-
based rendering system, aiming to deliver a "reasonably accurate result in a
reasonable time"2, by using a hybrid approach of Monte Carlo and deterministic
ray tracing. In this system, the irradiance cache is used to accelerate the calculation
of indirect diffuse light. The approach that the irradiance cache implements is
based on the premise that indirect light is mostly low frequent, and can thus be
sampled sparsely.

The irradiance cache is a mesh-less structure that consists of an octree, used to
store irradiance values. Each sample stores the position and normal of a surface
point, a range over which the sample is potentially valid, and the actual irradiance

1 Actually, Nintendo’s RCP chip which was used in the N64 was programmable on a low level, and
vertex shading was implemented in micro code for this chip.

2 From: http://radsite.lbl.gov/radiance/refer/long.html

54

value. To calculate the irradiance for an arbitrary surface point, nearby samples
are selected from the cache and used to calculate an interpolated or extrapolated
irradiance value. If insufficient samples are available, a new one is created on the
fly.

The range over which a sample is valid is calculated by taking the harmonic
mean of the lengths of the rays used for the irradiance estimate:

H = (
1

n

n∑
i=0

1

di
)−1 (4.1)

This links the range of individual samples (and thus sample density) to occlusion.
As other schemes that use interpolation to reconstruct illumination from a sparse

set of samples, the irradiance cache is a biased algorithm (see section 2.1.9).
The irradiance cache, in its initial form, suffers from a number of problems:

• The range calculation for a sample involves a stochastic process, which may
occasionally result in a density that is too sparse, leading to leaks and other
artifacts.

• Adding samples on-the-fly may lead to new samples that would have affected
the estimated radiance arriving at pixels that already have been finalized.

• In a multi-threaded environment, adding samples from several rendering
threads simultaneously requires extensive synchronization.

• For dynamic light sources, the samples need to be recreated for each frame,
leading to temporal noise.

Most of these have been addressed in more recent work. Křivánek et al. propose
to use neighbor clamping to prevent leaks [141]. Progressive refinement or an
irradiance gathering pass can be used to prevent samples from affecting already
rendered pixels [142]. Several methods have been proposed to make the irradiance
cache more suitable for a multi-threaded environment [232, 64]. In an off-line
environment, temporal noise is solved by refining the irradiance cache until a
predefined maximum error is guaranteed to be not exceeded. This illustrates an
important design constraint of the irradiance cache: where necessary, it trades
rendering time for image fidelity.

In the remainder of this chapter, we present a scheme that is suitable for sce-
narios where rendering time is the main constraint. Our scheme maintains the
benefits of mesh-less schemes. It uses a sampling density that adapts itself to local
requirements. In contrast to irradiance caching, we do not create this point set on
the fly. Instead, the point set is created once, during a preprocess that estimates
optimal positions for point sampling low-frequent shading information. We use
a variation of the Poisson-disk process for this, while the density of the points is
steered using ambient occlusion [277]. This provides a good estimate of local scene

55

complexity. The static point set is then used to store shading information. During
rendering, the shading data stored in the point set is interpolated to obtain the
final shading for any surface point in the scene. Calculating shading information is
thus decoupled from actual rendering. Finally, shading reconstruction is done in
real-time.

4.3 point set

The reconstruction of a continuous function based on a discrete set of samples
is a well-studied problem in computer graphics. Sampling the domain of an
unknown continuous function can be done by taking N uniformly distributed
random samples. While it is also possible to use evenly spaced samples, this limits
us to sample counts of N = xdim (where dim is the dimensionality, and x∈N,
x > 1). A deterministic sampling pattern would also result in aliasing artifacts,
which are far more objectionable to the human visual system than random noise
[273]. There are several ways to obtain a uniform random set of sample points. A
particularly good distribution is the Poisson-disk distribution, in which samples
are uniformly distributed on the domain of an n-dimensional space, based on a
minimum distance criterion between samples. In their 1985 paper, Dippé and Wold
propose to use a Poisson-disk distribution for anti-aliasing [66]. In 1986, Cook
suggested that the Poisson-disk distribution would be useful for distribution ray
tracing [50]. He reverted to jittered sampling however, considering the inefficiency
of Poisson-disk generation methods at the time. Hachisuka et al. extended the
results of Cook by sampling directly in the multidimensional space of the rendering
equation. They show that this reduces the required number of samples [99]. For an
extensive review of the Poisson-disk distribution, we refer the reader to [85].

The reversed problem is the representation of a continuous function by a set of
discrete samples. An optimal set of samples minimizes both the number of samples
and the error after reconstruction. The optimal distribution is non-uniform, unless
the represented continuous function is predictable3. More specific, samples will be
placed on discontinuities, and clustered in high-frequent areas.

For the construction of a point set that will be used to cache irradiance in
changing lighting conditions, we face an unknown irradiance function f, of which
some characteristics are known a priori. Discontinuities in f are likely to coincide
with sharp features in the underlying geometry, while high frequency changes
typically occur in areas of high geometric occlusion. The optimal set of samples
is thus one that has evenly spaced points on the known discontinuities of f, and
a random distribution that adapts to geometric occlusion and surface curvature
elsewhere, but is otherwise uniform.

An estimate of geometric occlusion is also used in ambient occlusion [277].
This technique is commonly used in real-time graphics as a rough estimate of

3 Predictable: Constant, when no interpolation is used during reconstruction, e.g. during visualization
of a voxel set; constant derivative or constant higher order derivative, when interpolation is used.

56

global illumination arriving at a point in the scene. Ambient occlusion can be
calculated in several ways: one is to estimate the visible area of the sky dome over
the hemisphere of the surface. As a more generic alternative, the average distance
(typically with a predefined cap) that rays can travel before hitting scene geometry
is used.

One final consideration for a precalculated point set is potential visibility. In most
scenes, there will be closed volumes, unreachable by light particles. By simulating
light particles bouncing around the scene, the potentially visible surfaces can be
found. This excludes the aforementioned closed volumes, but also the ’outside’ of
scenes that are not fully enclosed, further reducing the final sample count. Note
that this is achieved without any explicit knowledge about solid volumes in the
scene.

We combine the described ingredients in the final point set construction:

• In a first step, sample points are evenly distributed over the sharp edges of
the scene;

• In a second step, sample points are added to the visible surfaces of the scene,
using a Poisson-disk distribution, taking into consideration the points that
have already been placed on the discontinuities;

• The radii of the disks are adapted to surface curvature and to local geometric
density using ambient occlusion.

The construction of the point set is controlled by two user defined parameters: A
minimum and maximum disk radius. The minimum disk radius is also used on
discontinuity edges. The maximum disk radius guarantees a minimum sample
point density on large open surfaces.

4.3.1 Points on Sharp Edges

In 3D modeling software, the polygons of a scene are typically grouped in smooth-
ing groups. In a group, vertex normals are used to calculate a smoothly varying
surface normal, creating the illusion of a smooth transition from one polygon to
the other. The edges on the boundaries of the smoothing group represent disconti-
nuities. In the absence of smoothing groups, discontinuity edges can be defined
as edges between polygons of which the normals differ more than a predefined
threshold.

Discontinuity edges can be found efficiently using a winged edge data structure
[17], which stores for each edge the polygons connected to that edge. This structure
can be constructed in O(N), after which discontinuity edges are also found in
O(N). Once discontinuity edges have been found, samples are created on them
using the minimal disk radius. Note that samples need to be created on both ’sides’
of the edge, i.e. once with the normal of each connected polygon. By placing the
sample points on identical positions, correct interpolation is guaranteed.

57

Figure 20: Ambient occlusion and its relation to point density. a) Ambient occlusion is 0

when all rays over the hemisphere can travel a predefined distance. b) Graph
of ambient occlusion for a point on a horizontal surface, approaching a vertical
wall. Green: ambient occlusion; blue: ambient occlusion squared.

4.3.2 Dart Throwing

The Poisson-disk distribution is created by tracing particles. Particles start at one
or more points in the scene that are known to be outside closed volumes. Natural
locations for these points are the light sources in the scene. Particles are terminated
after a predefined number of random bounces, after which a new particle is created
at one of the light sources. The result is essentially a flood fill. Note that although
the process is similar to photon shooting, the particle tracing does not contribute
to the shading itself. Therefore, the number of bounces, energy absorption, or a
specific distribution over the light sources are irrelevant. Also note that while it is
possible to miss scene regions that require many bounces, in practice this is not an
issue, since the light received by these regions will be negligible.

Each vertex of the path that the particle travels is considered as a potential new
sample position. At the vertex position, the ambient occlusion is determined, and
then used to define the radius of a disk. To determine ambient occlusion, a fixed
number of rays, over the hemisphere of the surface point, with a predefined length,
are cast (see figure 20a). The radius of the disk is then scaled by the square of
this value (see figure 20b). Finally, the disc is checked against previously created
sample points.

The process is terminated when a predetermined number of subsequent samples
overlapped existing sample points.

Calculating ambient occlusion for new samples is a relatively expensive part of
the process. To prevent this calculation for samples that will be rejected anyway,
we first check if a sample could be inserted with a minimal search radius. If this is
not the case, the sample is immediately rejected.

Per sample point we store its position, the surface normal, and a radius. This
radius will be used during reconstruction (see paragraph 4.4.8).

The resulting point set is shown in figure 21.

58

Figure 21: The Sponza Atrium, and the point set for this scene, at three densities: 48k, 105k
and 270k points.

4.3.3 Discussion

Using the point set to store shading information rather than calculating this shading
per pixel has several benefits. First of all, the size of the point set is typically much
smaller than the amount of rendered pixels. Besides this, calculating the shading
information can now be decoupled from the rendering process. Shading can e.g. be
updated incrementally, or in a view dependent manner. One particularly interesting
application is to store ambient occlusion in the sample points: by scaling stored
values to 90% and sending out 10% new rays per sample point, updating ambient
occlusion is effectively sparsely sampled both spatially and temporally.

4.4 shading the points

The point set constructed using the approach outlined in the previous section is
primarily useful for storing low-frequent shading information, such as indirect
lighting. Since the density of the point set does not adapt itself during rendering, it
does not handle sharp shadow boundaries from point lights well. Contact shadows
for area lights also pose a problem, unless locally a very high density is used. For
diffuse indirect illumination however, even a very small set of points gives plausible
results. In the context of real-time graphics for games, it is therefore worthwhile
to decouple direct and indirect illumination. In this section, we will discuss the
efficient calculation of indirect illumination for static and dynamic light sources.
Our implementation adds a single bounce of indirect light, which is sufficient for
games [233]. Direct lighting is calculated separately by a Whitted-style ray tracer.

4.4.1 Previous Work

In his 1997 paper on instant radiosity [132], Keller proposes to render global illumina-
tion to keep within real-time limits using hemispherical point light sources, placed
on the vertices of light paths obtained by performing a deterministic, quasi-random
walk [131]. The outgoing directions of light paths are evenly distributed; the local
density of the VPLs is thus proportional to the light received from the light source.
The instant radiosity approach is primarily aimed at GPUs, which can efficiently
render many point light sources with shadow maps and interleaved sampling [134].

59

The problem of the weak singularity, commonly present in implementations of this
algorithm, was later addressed by Kollig and Keller [140].

Instant radiosity was further improved by Laine et al. to support dynamic light
sources, in a real-time context [145]. This is done by updating the set of VPLs
generated for the first frame only partially for subsequent frames: VPLs that are no
longer visible from the light sources are replaced by new ones, in such a way that
the dispersion of the total set is minimized [170, 147]. Despite this, the resulting set
is not guaranteed to have an equal distribution over the sphere of the light source.
The intensity of individual VPLs is therefore scaled by the area of the hemisphere
represented by the VPL.

VPLs have also been used in the context of ray tracing by Wald et al. [251, 252,
244]. In their instant global illumination approach, fast ray tracing is combined with
instant radiosity, photon mapping, and interleaved sampling to achieve a full global
illumination on a cluster of PCs. Due to low sample rates and full reconstruction
of the set of VPLs for each frame, their method suffers from temporal low-frequent
noise.

The instant global illumination algorithm uses interleaved sampling to reduce
the cost of evaluating many lights. Various alternatives have been proposed to
solve this problem.

Ward proposes to only test visibility for lights which potential contribution
exceeds a predefined threshold [263]. The remaining lights also contribute, but
their visibility is estimated using earlier visibility queries for those lights.

Shirley proposes an unbiased method for sampling direct lighting from many
area light sources [214], by designing a probability density function over all lumi-
naries.

Paquette uses an octree to store the lights in a scene [183], and approximates
their collective contribution at each level of the octree, with a bound on the error
of this approximation. The method does not account for occlusion however.

In [105], the many-light problem is formulated as a matrix of light-sample interac-
tions; the sum of the matrix columns is the ideal final image. An approximation of
this ideal solution is calculated by sparsely computing full rows and full columns.

Like the instant radiosity algorithm, the lightcuts algorithm by Walter et al.
[260, 261] discretizes direct illumination and indirect illumination into the summed
contribution of many point lights, and approximates the illumination from these
point lights at a strongly sub linear cost. The point lights are organized into a
binary tree. Each node in the tree contains a single light source that represents the
cluster of lights in the subtree. During rendering, clusters are adaptively selected,
based on a perceptual metric and conservative bounds on the error in estimating
the contribution of a cluster.

60

Figure 22: The static set of VPLs for the Sponza Atrium. The yellow dots represent the
VPLs. The blue dots represent the sample points. For this image, 8k VPLs where
used, and 105k sample points.

4.4.2 Algorithm Overview

Within our framework, we use VPLs to add a diffuse bounce to our Whitted-style
real-time ray tracer [27], using the point set of which the construction has been
detailed in the previous section. Our scheme differs from existing approaches:

• A static set of VPLs is used rather than regenerating or updating the set for
each frame;

• Visibility between VPLs and the sample points is precalculated;

• Before rendering a frame, illumination for the sample points is estimated
using the lightcuts algorithm;

• During rendering, indirect illumination is reconstructed using the shading
stored in the sample points.

The reconstructed indirect illumination is then added to direct illumination calcu-
lated by the ray tracer. The scheme runs in real-time.

4.4.3 Constructing the Set of VPLs

In the absence of a known set of lights on which the distribution of VPLs can be
based, the best distribution is a uniform one. We generate a static set of VPLs using
the same dart throwing process used to create the set of sample points. For the
VPLs, we do not steer density using ambient occlusion. Also, the density of the set
of VPLs is lower than the set of sample points. Typically, for N sample points, N /
10 VPLs are sufficient. The result is shown in figure 22.

61

Figure 23: Three cuts through a light tree for four lights. In the first cut, lights 1 and 2

are represented by a cluster. Light 1 is the representative light of the cluster. In
the second cut, lights 1 and 2 are used without clustering. Lights 3 and 4 are
clustered, and represented by light 4. In the third cut, all lights are represented
by clusters. Lights 1 and 4 are not approximated, since they represent the two
clusters.

4.4.4 Shading using the Set of VPLs

Per frame, the intensity of all VPLs is updated, by evaluating the light sources in
the scene. Each VPL covers a certain area of a sphere around the light source. The
energy that the light sends to that area is re-emitted by that VPL (scaled with the
surface BRDF), as if the surface that the VPL represents was reflecting it. Similar to
the distribution in the incremental instant radiosity algorithm by Laine et al., the
density of the VPLs is not equally distributed over the sphere of the light sources.
When calculating the intensity of each VPL, the contribution of each light source is
thus scaled by the area of the sphere that the VPL represents (eq. 4.2).

Ip =

N∑
i=1

LiG(p,q)V(p,q)dAq (4.2)

The VPLs in turn illuminate the sample points.

4.4.5 Precalculated Visibility

The cost of this process is dominated by visibility queries between the VPLs and
the sample points. Since both the VPLs and the sample points are static, visibility
can be cached. The size of this cache is proportional to the product of the number
of VPLs and the number of sample points. The data is however highly coherent;
neighboring sample points are likely to “see” a similar set of VPLs. As a result,
visibility data compresses well, using e.g. run-length encoding [93]. To further reduce
the size of the data, we use the following approach. First, we group nearby sample
points in clusters. For each cluster, a base-vector is stored, containing visibility
data for the first sample point in the cluster. For the remaining sample points, a
delta vector is constructed, by calculating the XOR between the visibility data of
the sample point and the base vector. The delta vector is then compressed using
run-length encoding and stored to disk.

62

4.4.6 The Lightcuts Algorithm

We use a modified version of the lightcuts algorithm to reduce the cost of trans-
ferring illumination from the VPLs to the sample points. We first summarize the
original algorithm, before we describe the modifications.

Given a set of point light sources S, the radiance L caused by their direct
illumination at a surface point x viewed from direction ω is a product of each
light’s material, geometric, visibility and intensity terms summed over all the lights:

LS(x,ω) =
∑
i∈S

Mi(x,ω)Gi(x)Vi(x)Li (4.3)

In the lightcuts algorithm, lights are stored in the leafs of a binary tree. The
interior nodes of the tree group these lights into clusters. The root node thus
represents all lights in the scene. A cluster is represented by one of the lights in the
cluster. Besides this position, the bounds, an orientation bounding cone, and the
summed intensity of the lights in the cluster are stored. The tree is constructed in a
bottom-up fashion, by grouping pairs of lights or clusters, based on a cluster size
metric ‖C‖ = IC(αC

2 + c2(1− cosβC)
2). The naive approach has an algorithmic

complexity of O(N3); a more efficient approach is described by Walter et al. [262].
Using a cluster rather than the individual lights reduces the number of cal-

culations, but introduces error. The radiance caused by the lights in the cluster
is:

LC(x,ω) =
∑
i∈C

Mi(x,ω)Gi(x)Vi(x)Li (4.4)

By using the representative light and the cluster intensity instead, this is approx-
imated as

LC(x,ω) ≈Mi(x,ω)Gi(x)Vi(x)
∑
i∈C

Li (4.5)

The error introduced by this approximation is the difference between equation
4.4 and equation 4.5. This error can be bound by calculating the upper bound L̂C:

L̂C(x,ω) ≈M̂i(x,ω)Ĝi(x)V̂i(x)
∑
i∈C

Li (4.6)

It is clear that 0 6 LC 6 L̂C, and since both LC and L̂C are positive, the error εC
is bound by 0 6 εC 6 L̂C.

The upper bound on the error is thus determined by the upper bounds on the
material term, the geometric term, and the visibility term. These are determined
individually as follows:

63

The upper bound on the visibility term V̂C is zero, if all lights in the cluster are
invisible from x, or one otherwise. Since this is hard to bound conservatively, an
upper bound of one is used.

The geometry term for oriented (hemispherical) point lights is Gi =
max(cosθi,0)
‖yi−x‖2

.
To compute the bounds of this term, the minimum distance to the cluster for the
denominator is determined, as well as the minimum angle between a vector from
x and any orientation vector of lights inside the cluster for the numerator. For this,
the cluster is first transformed into the tangent space of x. Then, the upper bound
for cosθ over the transformed points p is calculated:

cosθ 6

max(pz)√

min(p2x)+min(p2y)+(max(p2z))2
, if max(pz) > 0

0, otherwise

. (4.7)

The material term is calculated as Mi(x,ω) =
max(cosθi,0)

π . The upper bound for
this term is calculated similarly to the geometry term.

The bounds on the error of clusters are used to construct lightcuts. A lightcut
is a set of clusters that represents each light source exactly once (figure 23). The
clusters in the cut are refined by replacing them with their child nodes, as long as
the maximum error of the lightcut is above a predefined threshold. Refinement of
clusters happens in order of contribution to the total error. During each refinement
step, a cluster in the lightcut is replaced by its two children.

4.4.7 Modifications to Lightcuts

We propose a number of modifications to the original lightcuts algorithm that
make it more suitable for our problem.

As described in subsection 4.4.5, we precalculate visibility between sample points
and virtual point lights. The precalculated visibility data replaces the expensive
visibility tests during cluster refinement. By determining visibility either between
one VPL and many sample points, or one sample point and many VPLs, coherent
sets of rays are created, which can be efficiently traced using coherent ray packet
tracing [249]. This optimization is not possible in the original algorithm, since the
result of each visibility test is needed before the decision is made to further refine
a cluster. Precalculated visibility also allows us to estimate the upper bound on
the visibility term, which is estimated to be one in the original algorithm. With
precalculated visibility, the test to see if all lights are invisible from a sample point
x is now a feasible one. This allows us to skip entire clusters. It also allows us
to refine clusters faster, when exactly one of the children of a cluster is invisible.
In that case, replacing the cluster by its visible child is always better, as the error
bound on the child node is smaller.

A second modification to the original algorithm is the use of spherical bounds,
rather than axis aligned bounding boxes (AABBs). The spherical bounds simplify

64

the bounding volume transform of the original algorithm that is needed to deter-
mine the numerator of the material term and the geometry term. This transform
is expensive: it involves transforming all the lights in the cluster to determine an
accurate spatial bound for the cluster, or, alternatively, a transform of the vertices
of the bounding box, which leads to a larger transformed bounding box, and thus
an overestimated upper bound on the error. For spherical bounds, this is reduced
to a trivial transform of the center of the bounding sphere.

Using spheres rather than AABBs requires modifications to the calculation of
the material term and the geometry term.

To calculate M̂C for spherical bounds, we distinguish three cases. The first
one is when x is inside the sphere: in this case, M̂C = 1. M̂C is also one if the
normal at x intersects the sphere. In all other cases, M̂C =

n·y
‖y‖ , where y = un + vc,

u =
√

r2(c·c−r2)
c·c−(n·c)2 , v = c·c−r2−uc·n

c·c and c is the position of x relative to the sphere.

Calculating ĜC for spherical bounds requires the distance of x to the sphere,
which is ‖ c ‖ −r.

The total upper bound on the cluster error is summarized in algorithm 4.1.
For our application, the light tree is constructed once, instead of per frame. This

requires a final modification to the original algorithm. The light tree is constructed
by clustering lights, grouping them by similarity. For the lightcuts algorithm, the
following metric is used:

‖C‖ = IC(αC
2 + c2(1− cosβC)

2) (4.8)

Considering the unknown light intensities, we use the following metric instead:

‖C‖ ′ = αC
2 + c2(1− cosβC)

2 (4.9)

4.4.8 Reconstruction

Before the point set can be used for rendering, a structure is assembled for effi-
ciently querying the point set. Reconstruction is done in a real-time context; high
performance is therefore paramount. In the irradiance cache algorithm, samples
are stored in an octree. Each sample is stored once, in one of the leafs of the octree.
The octree adapts itself well to local scene complexity, and ensures compact data
storage.

We implemented a similar octree for our point set. Besides this octree, we also
implemented a loose grid data structure. In this structure, grid cells overlap, and
samples are inserted in all grid cells that contain the sample position. One sample
thus potentially ends up in multiple grid cells. By adapting the overlap between
grid cells to the maximum search radius during reconstruction, this data structure
ensures that only a single grid cell is accessed for each query. We found that
shading reconstruction using the grid is up to an order of magnitude faster than

65

Algorithm 4.1 Calculating the error bound for a cluster bounded by a sphere of
radius r at position csphere, with a cone axis m and the cosine of its half-angle
cosβC, illuminating surface point x with surface normal n.
c← csphere − x
a← c · c − r2
ifa 6 0 return 1
// compute geometric upper bound
cm ← c ·m
tG ← c · c − c2m
Ĝnum ← 1

if (cm > 0∧ c · c > r2) ∨ (tG > r
2)∧ (cosβC > −1)

u←
√
a · r2/tG

v← (a+ u · cm)/c · c
yG ← um − vc
cφ ← (u− v · cm)/ ‖ yG ‖
if (cφ < cosβC)

if (cosβC > 1− ε ∧ cφ 6 0) return 0
Ĝnum ← cos(arccos cφ −βC)

end
end
d2 ← (

√
c · c − r)2

// compute material upper bound
cn ← c · n
tM ← c · c − c2n
if (cn 6 0 ∨ c · c 6 r2) return Ĝnum/d2

u←
√
a · r2/tM

v← (a+ u · cn)/(c · c)
yM ← un − vc
cθ ← u− v · cn
if cθ 6 0 return 0
M̂← cθ/ ‖ yM ‖
return (Ĝnum · M̂)/d2

66

reconstruction using the octree. Despite its larger memory footprint, it is therefore
the preferred structure.

Direct visualization of the shading information stored in the point set by search-
ing for the nearest point yields a Voronoi diagram, with discontinuities between
the Voronoi cells. A more visually pleasing result is obtained by adding a random
number to the calculated distances to the points. If enough samples are taken, this
results in a smoothed Voronoi diagram. Alternatively, the smoothed solution can
be calculated directly:

Cp =searchradius− distancep (4.10)

shade =

∑N
p=1 shadepCp∑N

p=1Cp

where N is the number of points within the search radius, Cp is the contribution
of a single point, shadep is the shading value stored in that point, and shade is
the final interpolated result.

This will cause lone points to have a linear gradient from the point itself towards
the edge of the search radius. Instead of a linear gradient, a quadratic or cubic
gradient can be used, to make the shape follow the Voronoi edges more closely.

Note that this algorithm implements part of the Shepard approximation [213].
The interpolation scheme proposed by Shepard assumes 2D or 3D interpolation
in unconstrained 2D or 3D space. In our case, reconstruction takes place on the
surfaces of the scene geometry. This puts additional constraints on the set of sample
points that can be used to reconstruct shading. We use the following criteria for
sample P to reconstruct shading for point X:

1. The contribution Cp of sample P is scaled by the dot product of the surface
normal at X and the surface normal at P;

2. P is rejected if its distance to the plane of X exceeds a specified threshold.

The first criterion ensures that samples with a similar normal as X have the greatest
influence, while samples on opposing and perpendicular surfaces are not included
in the estimate. The second criterion prevents that nearby samples that lie on a
different surface are not included, even when normals are equal.

The reconstruction algorithm is shown in algorithm 4.2. An efficient implemen-
tation of this algorithm is provided in appendix A.

The cost of reconstruction is similar to the cost of a single shadow ray. This cost
is dominated by cache misses. With minimal loss of quality, these can be reduced.
When four primary rays (arranged in a 2x2 square) hit the same primitive, it can
be assumed that the sample points contributing to the shading of the four surface
points are the same. In this case, the grid is queried once, and the obtained data is
used for all four rays, taking into account the surface normals for the four primary
intersection points. For typical scenes, this reduces the cost of reconstruction by
50%, without visible artifacts.

67

Algorithm 4.2 The reconstruction algorithm. X is the surface point for which
shading is reconstructed, P is a sample point. Nx and Np are the surface normals
at these locations.
bbox← scene.GetBounds()
Gx,y,z ← (X− bbox.p1) ∗ gridsize/bbox.extent
cell← grid[Gx,Gy,Gz]
sum← 0

rgb← 0

for eachP in cell
scaleangle ← max(0,NX ·NP)
scaledistance ← max(0,Pradius − |X− P|)

sum← sum+ scaleangle ∗ scaledistance
rgb← rgb+ Prgb ∗ scaleangle ∗ scaledistance

rgb← rgb/sum

Figure 24: Comparison of image quality for 20k, 40k and 80k sample points.

4.5 results

We implemented the caching scheme in the Arauna real-time ray tracer (see chapter
3). The point set and the grid have been applied to store indirect lighting based
on a set of VPLs for a wide range of scenes, three of which are shown in figure 6.
All scenes where rendered at a resolution of 1280x720 pixels. The renderer used
24 rendering threads on 12 physical cores of a hyperthreaded dual Intel Xeon
platform, running at 3.4 Ghz.

These results show that reconstruction of the indirect illumination adds little
overhead to the overall rendering cost. Real-time performance is achieved for
the Sponza Atrium and Sibenik Cathedral scenes. The reconstruction cost in the
Modern Room scene is relatively high, which leads to somewhat lower frame rates
for this scene. Reconstruction speed is mostly independent of sample point count.

Figure 24 shows the relation between pointset density and image quality. At 20k
sample points, the pointset is too sparse to find sufficient points on the ceiling. At
40k sample points, this is improved. For 80k samples, a mostly smooth result is
obtained.

68

samples/vpls 0/0 40k/1k 80k/1k 80k/2k

ms 41.7 67.8 65.4 65.4

fps 24.0 14.7 15.3 15.3

update 0 69.1 122.9 170.8

fps 24.0 7.3 5.3 4.2

samples/vpls 0/0 40k/1k 80k/1k 80k/2k

ms 20.3 30.6 29.5 29.5

fps 49.3 32.7 33.9 33.9

update 0 56.5 107.1 149.7

fps 49.3 11.5 7.3 5.9

samples/vpls 0/0 40k/1k 80k/1k 80k/2k

ms 31.1 39.8 40.4 40.4

fps 32.2 25.1 24.8 24.8

update 0 68.2 133.6 206.6

fps 32.2 9.3 5.7 4.0

Table 6: Absolute rendering performance in milliseconds per frame and frames per second
for three scenes, for various combinations of sample point counts and VPL counts.
The ms rows shows rendering time, including shading reconstruction. The update
rows show the time spent on updating the shading information, using the VPLs
and the lightcuts algorithm. The screenshots show the scene without indirect light,
two pointset densities, and the scene with indirect light.

69

Figure 25: Two typical problematic situations for the pointset. Left image: light leaking
from a brightly lit area below the floor. Sample points on the vertical wall below
the floor are included in the estimate for the area above the floor. Right image:
contact shadows for indirect light near the foot of the pillar appear detached
from geometry, due to low sample point density.

The results further show that updating the indirect illumination for each frame
using the lightcuts algorithm can only be done at interactive frame rates. Al-
though multiple frames per second can be rendered, a full update of the indirect
illumination is currently not feasible in real-time.

4.5.1 Conclusion

We presented a caching scheme for indirect illumination. The indirect light is
added to the direct light contribution evaluated by a Whitted-style ray tracer. Our
implementation achieves interactive frame rates on commodity hardware, at a
resolution comparable to what is common in modern games.

As expected, sparse sampling of indirect illumination works well for scenes
where changes in indirect lighting are low frequent. For these scenes, relatively
small sets of sample points and VPLs are sufficient for visually pleasing results.

Our system is limited to static scenes. Also, since the sample points are stored in
a regular grid for rapid reconstruction, for scenes that occupy only a small subset
of the cells of such a grid, our scheme may not be efficient. Our scheme has some
problems with indirect shadows near occluders, and fails to achieve good results
in scenes that are mostly lit indirectly.

4.6 future work

There are a number of topics that would benefit from further research to improve
the applicability of the described scheme. One limitation is the lack of support for

70

dynamic scenes. Another limitation is the preprocessing time of the point set and
the visibility data. Adding multiple bounces to the indirect illumination would
improve the lighting quality in scenes that are mostly lit indirectly.

4.6.1 Dynamic Meshes

The presented approach focuses on static geometry with moving light sources. This
can be extended to dynamic geometry in several ways. For rigid motion, sample
points can be transformed along with the geometry. This requires an update of the
visibility information, but in most cases, visibility will not undergo rapid changes,
and calculations can be spread over multiple frames. Due to our choice for the
loose grid, removing and reinserting sample points is quite expensive however,
and so this method is not suitable for extensive scene changes.

For deformable objects, an alternative approach is practical: In this case, sample
points can be generated directly on the vertices of the geometry. Large triangles (if
present) can be further subdivided by placing extra sample points along edges and
at the center of the triangle. Generating the point set in this deterministic way is
efficient, and prevents temporal artifacts. We did however find that this method
tends to produce artifacts where the deformable object touches static geometry, as
points on the dynamic objects get close to this static geometry, and ’leak light’ on
it. Finding a robust solution for this, and for unstructured motion, is an interesting
direction for future research.

4.6.2 Point Set Construction

Generating the point set is currently a time consuming process. The dart throwing
requires many ray queries, of which many are in vain, as darts get rejected due
to the presence of existing sample points. There are more efficient ways to create
Poisson-disk distributions on the surfaces of a scene. We would like to investigate
the possibility of decoupling the flood fill from generating points on the surfaces.
A limited particle trace could be used to find polygons that can be reached from
the light sources, after which the set can be extended by traversing the winged
edge structure. Polygon sides marked as visible could then be populated by sample
points directly. This would significantly reduce time, and perhaps also enable
real-time reconstruction of the point set for dynamic sections of the scene.

Once particle tracing is not directly coupled to Poisson-disk dart throwing
anymore, Lloyd’s relaxation can be used to further improve the quality of the point
set.

4.7 discussion

To add diffuse indirect light to the Whitted-style Arauna ray tracer, we proposed to
use a precalculated set of points on the surfaces of the scene, distributed according

71

Figure 26: The Sponza Atrium, rendered with specular reflections and a single indirect
bounce, sparsely sampled using the pointset.

to a Poisson-Disk distribution, with an adaptive density based on ambient occlusion.
The pointset is detailed near occluders, and sparse on large surfaces. We use
the pointset to store indirect illumination, which we calculate using the Instant
Radiosity approach. The set of VPLs is evaluated using the Lightcuts algorithm,
and precalculated visibility between VPLs and the pointset. Although the pointset
is static, we proposed several approaches to handle dynamic geometry.

The resulting renderer is able to produce high quality images (see figure 26). This
image quality is somewhat deceptive however. The renderer requires significant
preprocessing of the (static) geometry. It cannot efficiently handle area lights, unless
we store both direct and indirect illumination in the pointset. Glossy materials
can only be handled if we update the pointset for each rendered frame. The
shading detail is coarse for smaller pointsets, leading to artifacts around sharp
polygon edges, and low-quality contact shadows. In practice, this requires manual
parameter tuning to achieve acceptable results. The preprocessing, manual tuning
and limitations nullify many of the advantages of ray tracing over rasterization.

In the second part of this thesis, we turn to path tracing to alleviate these
problems. Where Whitted-style ray tracing offers intuitive and elegant rendering
of direct light and specular transport, path tracing provides the same elegance for
a broader set of light transport paths, including glossy and diffuse reflection and
area lights.

72

Part II

R E A L - T I M E PAT H T R A C I N G

5
C P U PAT H T R A C I N G

1In the following chapters, we will investigate the feasibility of real-time path
tracing on consumer hardware. In this chapter, as well as the next, we lay the
foundation for this.

We first investigate the efficiency of ray queries on the CPU in the context of path
tracing, where ray distributions are mostly random. We show that existing schemes
that aim to improve the efficiency of ray tracing on the CPU fail to do so beyond
the first diffuse bounce. We then present an alternative scheme inspired by the
work by Pharr et al. [188] in which we improve data locality by using a data-centric
breadth-first approach. We show that our scheme improves on state-of-the-art
performance for ray distributions in a path tracer.

5.1 data locality in ray tracing

Over the past decade, ray tracing performance on CPU’s has greatly increased2 due
to SIMD-extensions and multi-core architectures. The algorithms that benefitted
the most of these advances depend strongly on coherent ray distributions, where
rays have similar origins and directions, to work well. In the context of Monte
Carlo path tracing, this coherency is mostly unavailable: directional coherency is
typically already lost for the first diffuse bounce, and although these rays still
have similar ray origins, this is not the case for the second diffuse bounce. Beyond
this point, ray distributions are essentially random. This leads to a highly random
access pattern of scene data, and, as a consequence, poor utilization of caches and
SIMD hardware.

In this chapter, we investigate the work that has been done to improve data
locality in the context of ray tracing. We show that the extent to which existing
approaches improve data locality is limited in the context of path tracing, and
analyze the cause of this. For divergent rays, we propose a traversal scheme that
uses breadth-first traversal and batching to improve the performance of a ray
packet traversal scheme. Our scheme is based on the work by Pharr et al., which
targeted out-of-core rendering. Unlike their system, our scheme targets the top of
the memory hierarchy. Our system consistently outperforms single-ray traversal
through a multi-branching BVH.

1 This chapter is based on an article to appear in CGForum, "Memory-Coherent Path Tracing" [28].
2 In their 1999 paper [184], Parker et al. report 1M rays per second (for figure 16) on a 24Gflops

SGI Origin 2000 system. Boulos et al. achieve 3M for (almost) the same scene [34], on a 2Gflops
machine, a 36x improvement.

75

Figure 27: The memory hierarchy: smaller, but faster caches hide the latency of larger but
slower memories. Shown cache sizes and latencies are for our test system (Intel
Xeon X5670), per core.

5.2 path tracing and data locality

The game developer and optimization specialist Terje Mathisen once stated that
“almost all programming can be viewed as an exercise in caching” [4]. With this
remark, he points out the importance of caches on modern computer architectures,
especially when algorithms deal with large amounts of data. Considering the vast
gap between the rate at which a processor can execute commands, and the rate
at which memory can supply data for these commands, caching is usually the
optimization with the greatest effect.

Caches are part of the memory hierarchy [40] (see figure 27). Small, but fast
caches hide the latency of larger, but slower memories, assuming a certain level of
data locality exists [136]3. Optimal data locality in an algorithm is achieved when
the number of times that the same datum is loaded into the caches is one. In other
words: all the work that involves a particular datum is carried out, after which
the datum will not be accessed again. Note that uniform streaming algorithms,
where one kernel is applied to all elements of an input stream, naturally reach this
optimum.

For algorithms that perform tree traversal, data locality tends to decrease with
tree node depth. While nodes high in the tree are repeatedly accessed for successive
queries, deeper levels are often evicted before being accessed again. This is shown
in figure 28. The graph shows how the cost of accessing the various levels of the
memory hierarchy is distributed over the levels of a 4-wide multi-branching BVH,
traversed by the rays of an incoherent ray distribution4. The L1 cache is able to
handle the majority of the transfers. At deeper levels, more queries fall through to
L2, L3 and memory. While L1 is mostly ineffective for the deepest levels, the total

3 In computer science, data locality is subdivided in temporal locality, spatial locality and sequential
locality. In modern systems, caches benefit from the first two, while the latter is exploited by
instruction prefetching.

4 This data was gathered using a cache simulator, which is described in section 5.4.

76

Figure 28: Access of the levels of the memory hierarchy, scaled by access cost (in CPU
cycles), for the first 14 levels of an acceleration structure. Measured for single
ray traversal, for the Soda Hall scene.

amount of traffic at these levels is small, and contributes little to overall memory
access cost.

The overall cost of memory access can be reduced by improving data locality.
Better data locality keeps data higher in the cache hierarchy, and reduces the total
number of memory transfers, by using the same data for more rays.

5.2.1 SIMD Efficiency and Data Locality

Modern CPUs strongly depend on SIMD technology to achieve optimal compute
efficiency. SIMD operates on vectors, rather than on scalars. Assuming that multiple
streams of data are available for which the same instructions are to be executed,
SIMD hardware processes these streams in parallel. The elements of the vectors
used to operate on these streams are typically referred to as lanes. CPUs operate on
four lanes (Intel/SSE [235], AltiVec [65]), eight lanes (Intel/AVX [152]) or sixteen
lanes (Intel Many Integrated Core (MIC) [114]/Larrabee [212]). Similar technology
on the GPU simultaneously processes 32 lanes [69, 88].

SIMD is effective when all lanes require the same instructions. When this is not
the case (e.g. due to conditional code), operations can be masked, or processed
sequentially. In both cases, SIMD utilization decreases.

77

SIMD efficiency is also affected by scatter / gather operations: loading data into
vector registers is faster if the required addresses are sequential5. At the same time,
sequential data access reduces the total number of cache lines that is read from
memory, as sequential data typically resides in the same cache line.

Efficiency of the memory hierarchy and SIMD efficiency are tightly coupled:
optimizations that aim to improve data locality will often also lead to better SIMD
utilization.

5.2.2 Previous work on Improving Data Locality in Ray Tracing

Several authors recognize the importance of data locality for the performance of
the ray tracing algorithm.

Ray Packets Zwaan, Reinhard and Jansen use ray packet traversal to quickly
select object data from the spatial data structure needed for the bundle of rays
[240, 201]. By traversing ray packets (referred to as pyramids in their papers) rather
than single rays, acceleration structure nodes are fetched once for a number of rays.
The authors report improved data locality for coherent ray distributions. Wald et al.
uses SIMD to traverse a kD-tree with a ray packet containing four rays [249], and
achieves interactive frame rates on a cluster of PCs. Smittler et al. propose a custom
hardware architecture, SaarCOR [207], that traces packets of 64 rays. They hide the
latency of cache misses by swapping between ray packets, using a technique similar
to multi-threading [186]. Later, the concept of ray packet traversal is generalized to
arbitrarily sized ray packets by Reshetov [202] and to other acceleration structures
[253, 254].

Reordering Based on the observation that packets of secondary rays often exhibit
little coherence, reordering schemes aims to regain coherence by reordering the
secondary rays from multiple packets into more coherent sets. Mansson et al.
[156] investigated several reordering methods for secondary rays. They aim to
create coherent packets of secondary rays by batching and reordering these rays.
They conclude that due to the cost of reordering none of the heuristics improves
efficiency when compared to secondary ray performance of the Arauna system
[27], which does not attempt to reorder secondary rays. Overbeck et al. propose
a ray packet traversal scheme that is less sensitive to degrading coherence in a
ray packet [178]. Their partition traversal scheme reorders the rays in the packet
in-place by swapping inactive rays for active rays and by keeping track of the last
active ray. This scheme is less efficient for primary rays, but performs better for
secondary rays.

Hybrid schemes Taking into account the inefficiency of ray packets for divergent
ray distributions, Benthin et al. proposed a hybrid scheme for the Intel MIC
architecture [114] that traces packets until rays diverge, after which it switches to
efficient single ray traversal [22].

5 In fact, on many SIMD architectures, this is a requirement; sequential code is used when this
requirement is not met.

78

Breadth-first A typical traversal scheme uses an outer loop that iterates over a
set of rays, and an inner loop that processes acceleration structure nodes. Hanrahan
proposed to swap these loops [100]. By using the inner loop to iterate over rays
rather than objects, access to objects stored on disk is minimized. In their 2007

study, Wald et al. investigated breadth first ray tracing with reordering at every
step [255]. They conclude that breadth-first ray tracing reduces the number of
acceleration structure nodes that is visited, but also that the high reordering cost
may not justify this. Boulos et al. continue this work [35]. In their paper, they show
that the performance gains of demand-driven reordering out-weight the overhead.
For diffuse bounces, these gains drop below 2x however. On the GPU, Garanzha
and Loop propose breadth-first traversal of rays [86]. Their scheme sorts the set of
rays into coherent packets and then performs a breadth-first traversal of a BVH.
On the GPU, they claim a 3x improvement over depth-first implementations for
soft shadows cast by large area lights.

Batching Several authors propose to use a form of batching to improve data
locality. In these schemes, traversal of a single ray is broken up in parts; rays are
batched in nodes of the acceleration structure, and advanced when such a node is
scheduled for processing. Pharr et al. [188] describe a system, Toro, for out-of-core
ray tracing where objects are subdivided using regular grids. Rays are batched in
the voxels of a secondary regular grid. This system is discussed in more detail in
section 5.3. Budge et al. [41] perform out-of-core rendering on hybrid systems by
breaking up data and algorithmic elements into modular components, and queuing
tasks until a critical mass of work is reached. Navratil et al. propose a system that
actively manages ray and geometry states to provide better cache utilization and
lower bandwidth requirements [168]. As in the Toro system, rays in their system
progress asynchronously. While Pharr et al. apply ray scheduling at the bottom of
the memory hierarchy, Navratil et al. aim to reduce RAM-to-cache data transport.
They claim a reduction of RAM-to-L2 cache transport up to a factor 7.8 compared
to depth-first packet traversal.

Streaming Breadth-first ray traversal combined with a filtering operation that
partitions the set of rays into active and inactive subsets effectively transforms ray
traversal into a streaming process, where one traversal step provides the input
stream for the next traversal step. Gribble and Ramani [96] propose an approach
that during traversal sorts a stream of rays into a set of active rays (rays that
intersect the current node) and inactive rays. They implement this on a custom
hardware architecture that supports wide SIMD processing. For a stream of rays,
their approach bears resemblance to breadth-first ray traversal [100]. Tsakok [237]
proposes a streaming scheme, MBVH/RS, which benefits from coherency if this is
present, and falls back to efficient single-ray traversal using an multi-branching
BVH for divergent rays. For divergent ray tasks on x86/x64 CPUs, this scheme is
currently the best performing approach.

79

5.2.3 Interactive Rendering

Interactive ray tracing poses specific challenges for efficient ray tracing schemes.
In an interactive context, many schemes exhibit overhead that exceeds the gains.
Because of this, schemes developed for out-of-core and offline rendering often do
not transfer to interactive rendering.

Of the approaches targeted at improving data locality in ray tracing, ray packets
have been by far the most successful for interactive ray tracing. Using ray packets,
the cost of data access is amortized over multiple rays. To work efficiently, ray
packet traversal schemes require that the rays in the set visit a similar set of
acceleration structure nodes. Benthin defines this traversal coherence in his Ph.D.
thesis as "the ratio between the number of spatial cells traversed by all rays and
the sum of cells traversed by any ray" [21]. This ratio is low when rays travel in
a similar direction, and have a similar origin. Without this coherence, ray packet
traversal schemes fail to improve on naive, depth-first single ray traversal.

Ray packet schemes, which have proven to be successful for interactive rendering
of primary rays and shadow rays, show degrading efficiency for secondary rays.
Although some authors report reasonable results for interactive Whitted-style ray
tracing [178], for path tracing, the overhead of these schemes makes them slower
than single ray traversal. Some authors therefore suggest to abandon ray packets
altogether [257], and to focus on efficient single ray traversal [60, 77].

To better understand the impact of ray coherence and the overhead of schemes,
we have implemented three schemes that target interactive performance, which
we compare against base-line performance of single ray traversal. We use the
terminology of Overbeck et al. [178] for the naming of masked traversal, ranged
traversal and partition traversal. We refer the reader to their paper for a detailed
description of these schemes.

single ray traversal For baseline performance, we chose single-ray, depth-first
traversal of a multi-branching BVH (MBVH or QBVH [60, 77, 257]), rather than
the more commonly used 2-ary BVH. Compared to a 2-ary BVH, the 4-ary
BVH performs 1.6 to 2.0 times better [60].

ranged traversal This scheme is based on the packet traversal scheme intro-
duced by Wald et al. (masked traversal, [249]), where a node of the acceleration
structure is traversed if any ray in the packet intersects it. Ranged traversal
improves on masked traversal by storing the first and last active ray in a
packet. Rays outside this range are not tested against the nodes of the ac-
celeration structure, reducing the number of ray-AABB tests. Like masked
traversal, this scheme performs best for primary rays. For secondary rays, the
range may contain a considerable amount of inactive rays, reducing efficiency.

partition traversal Designed for secondary rays in a Whitted-style ray tracer,
this scheme partitions the rays in the packet in-place by swapping inactive
rays for active rays and by keeping track of the last active ray. Compared to

80

Figure 29: The five scenes used in our experiments: Modern Room from Let there be Light
(88k triangles), the Sponza Atrium (93k), Conference Room (273k), Sibenik
Cathedral with the Lucy statue (603k), and Soda Hall (2.1M). Rendered with up
to 1k samples per pixel, and a maximum of 6 diffuse bounces.

ranged traversal, this scheme is less efficient for primary rays, but it performs
better for secondary rays, assuming some coherence is still available. Partition
traversal operates on groups of N rays (where N is the SIMD width) to reduce
overhead.

mbvh/rs Tsakok’s Multi-BVH Ray Stream tracing scheme, designed for divergent
ray distributions. For each MBVH node, the scheme intersects a list of rays
with the four child nodes, generating new lists for each of them. Like other
packet traversal schemes, MBVH/RS amortizes the cost of fetching a node
over all active rays. Unlike in partition traversal, the generated lists do not
contain any inactive rays. This makes MBVH/RS more efficient for divergent
ray distributions, where many MBVH nodes are traversed by a small number
of rays.

All traversal scheme implementations are hand-tuned for optimal performance.
Table 7 shows performance figures for the five scenes shown in figure 29. Using

a 4-ary BVH, baseline performance slowly degrades for each diffuse bounce.
For primary rays, ranged traversal outperforms all other traversal methods by a
significant margin. After one diffuse bounce, only MBVH/RS outperforms single
ray traversal, for some scenes, and by a small margin. After three diffuse bounces,
ranged traversal only achieves 17-26% of single ray traversal performance, while
partition traversal achieves 27-60% of single ray traversal performance. MBVH/RS
achieves between 79% and 106%.

To understand why the traversal schemes perform so poorly for divergent ray
distributions, we measured how many active rays visit the nodes of the acceleration
structure. Table 8 shows the average number of rays (of the original packet) that
intersects each visited node. For a traversal scheme to work well, this number
should be high. However, for the Modern Room scene (figure 29a), this number
drops rapidly after only one diffuse bounce. Note that this number is an average:
even for random ray distributions, all rays will intersect the root node of the BVH
(assuming the camera is within the scene bounds). We therefore also measured the
average number of rays that intersects the leafs of the acceleration structure. After
a few diffuse bounces, this number approaches one. The MBVH/RS algorithm
performs better, as it uses a relatively shallow BVH.

81

scheme scene primary 1
st

2
nd

3
rd

Single

Modern

3.032 1.874 1.608 1.531
Partition 6.400 1.157 0.790 0.723

Ranged 9.102 0.707 0.448 0.399

MBVH/RS 3.539 1.793 1.421 1.324

Single

Sponza

2.788 1.973 1.926 1.890
Partition 5.595 1.231 0.941 0.856

Ranged 7.897 0.800 0.520 0.476

MBVH/RS 3.424 2.174 1.765 1.673

Single

Lucy

2.899 1.746 1.645 1.591
Partition 4.145 0.879 0.636 0.605

Ranged 5.310 0.516 0.341 0.313

MBVH/RS 3.180 1.626 1.282 1.251

Single

Conference

3.528 2.141 1.718 1.583

Partition 5.937 1.435 1.102 0.956

Ranged 6.976 1.037 0.802 0.715

MBVH/RS 4.959 2.492 1.887 1.631

Single

Soda Hall

3.542 2.787 2.527 2.477

Partition 5.349 1.098 0.755 0.682

Ranged 8.821 0.788 0.459 0.430

MBVH/RS 4.151 3.058 2.734 2.631

Table 7: Performance of four traversal schemes, in 106 rays per second: single ray traversal
through a MBVH, partition traversal, ranged traversal, and MBVH/RS. Measured
for five scenes, for primary rays and 1, 2 and 3 diffuse bounces, on a single core of
a 3.8 Ghz Intel Xeon processor. Bold figures denote the best performing scheme
for each scene and depth.

82

Depth primary 1
st

2
nd

3
rd

Ranged/partition
Interior 94.38 9.12 4.71 3.84

Leaf 37.88 3.34 1.63 1.30

MBVH/RS
Interior 170.17 13.25 7.01 5.70

Leaf 97.57 6.26 3.20 2.60

Table 8: Average number of rays per visited leaf / interior node of the BVH, per recursion
depth, out of the original 256 rays in a 16x16 ray packet. Measured for the Modern
Room scene.

5.2.4 Discussion

Ray tracing efficiency for divergent ray distributions is affected by the low average
number of rays that is active when visiting the nodes of the acceleration structure.
The result of this is that the cost of fetching data from L3 cache and memory is
shared by a small number of rays. The low number of active rays also leads to poor
SIMD utilization.

The low average number is caused by the packet sizes for which existing schemes
perform optimally. Ranged and partition traversal, as well as MBVH/RS, perform
best for packets of 64 to 1024 rays [178, 237]. Although larger ray packets would
lead to higher active ray counts, in practice this reduces overall efficiency of these
schemes.

A scheme that is able to traverse very large ray packets, on the other hand, would
exhaust the L1 cache for the ray data alone in the first nodes of the acceleration
structure.

An optimal traversal scheme would operate on the same number of rays at each
level of the acceleration structure. This requires batching of rays at all levels.

Although batching could improve data locality, it has some disadvantages: the
batching itself may introduce considerable overhead. Batched rays must store their
full state. For BVH traversal, this includes a traversal stack.

5.3 data-parallel ray tracing

In the previous section, we have shown that schemes that are designed to improve
data locality in ray tracing work well for coherent ray distributions, such as those
found in Whitted-style ray tracing, but fail to improve data locality for divergent
ray distributions, as found in path tracing. Where Whitted-style ray tracing benefits
from a task-centric approach (where a task is a ray query or a ray packet query),
path tracing may benefit more from a data-centric approach.

83

In this section we describe a scheme, RayGrid, which locally batches rays, until
enough work is available to amortize the cost of cache misses over many rays. Our
scheme is similar to the scheme described by Pharr et al. [188], but targets the
top of the memory hierarchy. We analyze the characteristics of this scheme in the
context of interactive, in-core rendering.

5.3.1 Algorithm Overview

We will first describe the scheme developed by Pharr et al., which was designed
for out-of-core rendering in the Toro system. We will then describe our RayGrid
system, which borrows from the original scheme and makes it suitable for in-core
rendering.

Data structures used in Toro

The Toro system uses a number of data structures. The first is a set of static regular
voxel grids, which stores the scene geometry: the geometry grids. One such grid is
created per geometric object in the scene6. Geometry inside a grid cell is stored
sequentially in memory, so that spatial coherence in 3D equals memory coherence.
The static grids do not reside in main memory, and are accessed via a caching
mechanism that loads and evicts entire grid cells at once. For this to be efficient, the
grid cells must store thousands of primitives. This requires a secondary acceleration
structure inside each grid cell, for which Pharr et al. propose another regular grid.
This grid is referred to as the acceleration grid. Finally, rays traverse a third regular
grid, the scheduling grid.

The data structures are shown in figure 30. For clarity, the acceleration grid has
been omitted in this figure.

Batching for Out-of-core Rendering in Toro

Newly created rays are queued in the cells of the scheduling grid. Rays are
advanced by processing grid cells from the scheduling grid. When a grid cell is
scheduled for processing, each queued ray in it is tested for intersection with the
geometry inside each overlapping geometry voxel, and, if no intersection occurred,
advanced to the nearest neighboring grid cell, where it awaits further processing.

The system schedules grid cells in the following order: ray queues in the schedul-
ing grid for which all geometry data is cached are processed first. Once these are
depleted, the system loads geometry into the cache for the largest ray queue. This
way, the cost of loading data into the cache is amortized over as many queued rays
as possible.

In this system, processing of an individual ray does not necessarily lead to
completion: rays are merely advanced to the next voxel. The implication of this
is that ray traversal is asynchronous: the order in which rays arrive is undefined,

6 Primitives that stride voxel boundaries are stored in all grid cells they overlap.

84

Figure 30: Data structures used in the Toro system: geometry grids enclosing two geometric
objects (black), and the scheduling grid, used for advancing rays through the
scene (blue). The cells of the geometry grid typically contain thousands of
primitives, which are stored in another grid, the acceleration grid (not shown).

and the potential contribution of each individual ray to the final image must be
explicitly stored with the ray.

Batching for In-Core Rendering

In the Toro system, the cost of loading geometry into the cache is determined
by file I/O, patch tessellation, generating procedural geometry and displacement
mapping. Compared to in-core rendering, where caching is used to reduce the cost
of RAM to L3/L2/L1 data transfer, these costs are high, and justify considerable
overhead. This explains why a similar approach has not been considered for in-core
rendering, where overhead can easily nullify the potential gains of a scheme.

Like the Toro system, our RayGrid scheme uses a coarse spatial subdivision for
geometry that is used to improve data locality for geometry data. Instead of a
regular grid, we use a shallow octree structure, which adapts itself to local scene
complexity7. We queue rays directly in the voxels of the octree, rather than in a
separate structure. Like the Toro system, we store thousands of polygons in octree
nodes. To intersect these efficiently, we use an MBVH per octree node.

New rays are added to the system by placing them in ray queues, associated
with octree nodes. The system then processes ray queues ordered by size.

Overhead in RayGrid has been reduced by careful data layout and code optimiza-
tion. The resulting system performs significantly better than existing approaches
for divergent rays.

7 This is proposed by Pharr et al., but not implemented in the Toro system.

85

5.3.2 Data structures

This subsection discusses the main data structures used in RayGrid. The scheme
uses a hybrid data structure, consisting of a shallow octree, which contain MBVHs
for the geometry in each octree leaf.

Octree

Our system uses a shallow octree to subdivide the scene geometry. The octree
is extended with spatial bounds and neighbor links, to allow for stack-less ray
propagation: rays that leave an octree node through a boundary plane are added to
the octree node that the plane links to. If this is an interior node, the ray descents
to the leaf node that contains the entry point of the ray. The octree adapts itself
to local scene complexity, while the stack-less traversal maintains the benefits of
regular grid traversal.

The actual size of an octree node in memory is of little importance for the
efficiency of the scheme: compared to overall memory usage for geometry, the
octree node size is negligible.

MBVH

An octree node typically stores thousands of primitives. We further subdivide this
geometry using an MBVH, which is traversed using the MBVH/RS algorithm. The
MBVH is constructed by collapsing a 2-ary BVH, as described by Dammertz et al.
[60]. Since each octree node containing geometry has its own MBVH, we refer to
these as mini-MBVHs.

Ray Queues

Newly added rays are stored in ray queues. A ray queue is a container of a fixed
size, which stores rays by value. Ray queues are stored in three linked lists: one for
empty ray queues, one for partially filled ray queues, and one for full ray queues.
Initially, all ray queues are stored in the empty ray queue list. When a ray is added
to an octree node that does not yet contain any rays, the system assigns one ray
queue from the empty ray queue list to the octree node, and adds the ray to this
list. If the octree node already has a ray queue, the ray is added to that queue. If
the queue is full after adding the ray, it is decoupled from the octree node, and
added to the list of full queues.

The somewhat elaborate system for storing rays has a number of advantages:

• No run-time memory management is required to store arbitrary amounts of
rays per octree node;

• Many processed ray queues are full ray queues. This amortizes the cost of
fetching geometry data into the hardware caches over a large number of rays,
and leads to efficient traversal using the MBVH/RS algorithm.

86

A non-empty ray queue stores a pointer to the octree node it belongs to. Multiple
full ray queues can belong to the same octree node. Effectively, this allows us to
store an arbitrary amount of rays per octree node, divided over zero or more full
ray queues, and zero or one partially filled ray queues.

Rays are stored by value in the ray queues, in SoA ("structure of arrays") format8.
Although ray queues could also store ray indices, this requires one level of indi-
rection, which in practice proves to have a small impact on performance. We also
measured the impact of moving a ray from one queue to another in SoA rather
than the AoS ("array of structures") format. Despite the less coherent memory writes
for the SoA format (each stored float is written to a different cache line), this is
not slower in practice. The SoA format does allow us to intersect the rays with the
boundary planes of an octree node using SIMD code, which makes this layout the
preferred one.

The optimal size for a ray queue is determined by balancing the optimal stream
size for the MBVH/RS algorithm (256-1024) and the cost of having many partially
filled ray queues. The cost of exchanging a full ray queue for an empty one is
negligible.

Ray Data

Our scheme depends on the availability of large numbers of rays to run efficiently.
With many rays in flight, the size of a single ray record is important. We store a ray
in 48 bytes (11 floats and an integer), by storing the ray origin and direction, the
nearest intersection distance, the potential contribution of the ray, and the index of
the image pixel the ray contributes to. Since the contribution information is only
needed during shading, this data can be stored separately per pixel, which reduces
the amount of data copied per ray to 36 bytes (8 floats and an integer).

Since the ray direction is always normalized, it is possible to store only two
components of the vector, and derive the third whenever it is needed. Although this
reduces the ray record to only 32 bytes, this did not result in improved performance.

5.3.3 Ray Traversal

Once all rays have been added into the system, typically a large number of full
ray queues is available in the list of full ray queues. Ray traversal then proceeds,
starting with full ray queues. Once these are depleted, partially filled ray queues
are processed, until no active rays remain in the system. Each processed ray queue
is returned to the list of empty ray queues. At the end of the process, this list once
again contains all ray queues.

Processing a ray queue consists of two steps:

1. intersection of the rays with the primitives in the octree node, and

8 The queue stores the x-coordinates of all ray origins consecutively in memory, then the y-coordinates,
and so on. This data layout is more suitable for SIMD processing than the "array of structures",
where full ray records are stored consecutively.

87

Figure 31: Advancing rays through the octree structure.

2. advancing rays to neighboring nodes, if no intersection was found.

To intersect the rays with geometry, the rays in the queue are converted to the AoS
format, suitable for the MBVH/RS algorithm, and then traversed through the mini-
MBVH associated with the current octree node. For this, we use an unmodified
version of the MBVH/RS algorithm.

To advance a ray to a neighboring node, we first determine the boundary plane
through which the ray leaves the current octree node. The neighbor link of this
plane then determines the destination for the ray. Since we use an octree, it is
possible that the neighbor node is not a leaf node. If this is the case, the ray is
recursively added to the child node that contains the ray entry point, until we
reach a leaf.

Ray traversal in RayGrid is shown in pseudo-code in algorithm 5.1.
The high-level octree traversal is illustrated in figure 31. Rays are added in octree

node A, which contains the camera. Once all rays have been added to the system,
the ray queue for node A is processed. Rays propagate from node A to node B. In
node B, a new ray is added by the shading code. This secondary ray is advanced
together with the primary rays, and arrives in node C. Once node C is scheduled
for processing, this ray will be processed together with the primary rays from node
A.

In a practical implementation, RayGrid will not handle primary rays: as discussed
in section 5.2.3, ray packet traversal is more efficient in this case. Secondary rays
however are efficiently handled by our scheme.

5.3.4 Efficiency Characteristics

As mentioned in section 5.3.3, full ray queues are always processed first. Doing
so may saturate partially filled ray queues belonging to neighboring octree nodes.
At some point, there are no full ray queues left, and the system starts processing
partially filled ray queues. This reduces the efficiency of the algorithm: the cost of

88

Algorithm 5.1 Octree traversal in RayGrid. Rays are added to the octree leaf
nodes that contain the ray origins. Once all rays have been added, ray queues are
processed, starting with full queues, until all rays have terminated.
queuefull ← {}

queuepartial ← {}

queueempty ← allocatequeues()

nodecam ← octree.findleaf(camera.getpos())
for each ray in rays[0..N− 1]

add(nodecam.getqueue(), ray)
do

if notqueuefull.empty()
process(queuefull.head())

else if notqueuepartial.empty()
process(queuepartial.head())

else break
end

functionprocess(Queueq)
for each ray inq

if intersect(ray, q.node.mbvh)

finalize(ray)

for each link inneighbourlinks
for each active ray inq

if ray.intersect(link.getplane())
neighbor← link.getneighbor()
if (neighbor.getqueue() = null)

neighbor.setqueue(queueempty.head())
queuepartial.add(neighbor.getqueue())

full← neighbor.getqueue().add(ray)
if(full)

queuefull.add(neighbor.getqueue())
neighbor.setqueue(null)

queueempty.add(q)
end function

89

fetching geometry for an octree leaf node is amortized over fewer rays, and the
MBVH is traversed with a smaller ray packet.

This tail effect can be reduced by feeding more rays in the system. There are two
possible strategies for this:

• By feeding a large amount of rays before processing ray queues, the tail will
be relatively short. This increases the memory requirements of the algorithm.

• Alternatively, feeding rays may be coupled to queue processing: by feeding
new rays only when no full ray queues are available, memory requirements
stay low. This does however require a tight coupling between the code that
generates the new rays, and the ray queue scheduler.

In the context of a path tracer, where typically many passes are processed in
succession to reduce variance, it is also possible to stop processing ray queues
when no full ray queues are available. The partially processed rays remain in the
system, and add to subsequent passes. Only when the last pass of the path tracer
has completed, the tail needs to be processed. In this scenario, the scheme almost
exclusively operates on full ray queues.

5.3.5 Memory Use

The requirement to have many rays in flight leads to relatively high memory
requirements for the proposed traversal scheme.

The size of a single ray in memory is 36 bytes. As discussed in subsection 5.3.2,
rays are stored by value in the ray queues. For a set of N active rays and a queue
size of M, a minimum of M/N full queues is required. However, a partially filled
queue requires the same amount of memory as a full one. Since each octree leaf
node may contain zero or one partially filled queues, the memory required by
RayGrid is (O ·M+N) · 36, where O is the number of octree leaf nodes.

We found a queue size M = 384 and a maximum number of primitives per
octree leaf of 4096 to be a good choice for most scenes. For the Conference Room,
this results in O = 386 octree leaf nodes. For N = 10242 rays, the memory use is
41.09MB.

5.3.6 Cache Use

Perhaps equally or more important is the use of cache memory for the algorithm.
We measured the average amount of memory that is accessed while processing
an octree leaf for the Conference Room scene. For this scene, using the proposed
parameters, an octree leaf node contains 818 primitives on average. Processing
a leaf involves accessing 818 · 32 bytes for the primitives, 384 · 36 bytes for a full
queue, and 384 · 36 bytes in the queues of the neighboring nodes. The 818 primitives
are stored in a mini-MBVH of (on average) 175 nodes of 112 bytes each. The total

90

amount of memory accessed for an octree leaf is thus 73KB on average, which is
well below the size of the L2 cache in our system.

5.4 results

In this section, we discuss the performance of the RayGrid scheme.

5.4.1 Performance

We have measured the performance of our scheme. In table 9, we compare the
performance of RayGrid against base-line single-ray performance and the original
MBVH/RS algorithm.

As can be seen from these figures, our RayGrid scheme consistently outperforms
MBVH single ray traversal and MBVH/RS. In many cases this is only by a small
margin. However, compared to the MBVH/RS algorithm, the margin is larger.

Table 10 provides more insight in the improved efficiency. Except for primary
rays, the MBVH/RS scheme is able to use a significantly larger number of rays in
the visited nodes in the RayGrid algorithm.

To gain more insight in the performance characteristics, we gathered several
statistics. For all scenes, optimal or near-optimal performance is achieved for a ray
queue size of 384 and a maximum number of primitives per octree leaf node of
4096. For the Conference Room scene, these parameters result in an octree of 441

nodes (of which 386 nodes are leaf nodes). The average depth of an octree leaf node
is 4.15. On average, octree leafs contain 818 primitives, for which mini-MBVHs are
constructed with an average size of 175 nodes and an average leaf depth of 7.0. For
comparison, we constructed an MBVH for the same scene, without the shallow
octree: the average depth of leaf nodes in this structure is 10.9, which means that
for this scene, the octree replaces the first 3.9 levels of the MBVH.

Profiling indicates that in the RayGrid algorithm, 47.3% is spent on octree
traversal, versus 26.3% on MBVH traversal, indicating that octree traversal is
considerably more expensive than MBVH traversal.

To measure the characteristics of the RayGrid algorithm in terms of caching
behavior we implemented a cache simulator. The simulator mimics the cache
hierarchy of our test system, with a 32KB L1, 256KB L2 cache, and 2MB L3 cache9.
The L1 and L2 caches are 8-way set associative, L3 is 16-way set associative. The
caches use a pseudo-LRU eviction scheme. We use code instrumentation to record
reads and writes.

In table 11, cache behavior of the RayGrid algorithm and MBVH/RS is compared
for the Conference Room scene. We estimate the total cost of memory access by

9 Our test system uses a 12MB shared L3 cache for six CPU cores. The simulated 2MB L3 cache is an
approximation of the per-core L3 capacity when all cores run the RayGrid algorithm.

91

scheme scene 1
st

2
nd

3
rd

4
th

Single

Modern

1.874 1.608 1.531 1.497

MBVH/RS 1.793 1.421 1.324 1.275

-4.3% -11.6% -13.5% -14.8%
RayGrid 2.392 2.136 2.115 2.113

+27.6% +32.9% +38.1% +41.1%

Single

Sponza

1.973 1.926 1.890 1.869

MBVH/RS 2.174 1.765 1.673 1.636

+10.2% -8.4% -11.5% -12.5%
RayGrid 2.311 2.325 2.310 2.315

+17.1% +20.7% +22.2% +23.7%

Single

Lucy

1.746 1.645 1.591 1.472

MBVH/RS 1.626 1.282 1.251 1.122

-6.9% -22.1% -21.4% -23.8%
RayGrid 1.855 1.840 1.806 1.763

+6.2% +11.9% +13.55% +19.8%

Single

Conf.

2.141 1.718 1.583 1.467

MBVH/RS 2.492 1.887 1.631 1.499

+16.4% +9.9% +3.0% +2.2%
RayGrid 2.355 2.055 1.910 1.838

+10.0% +19.6% +20.6% +25.3%

Single

Soda

2.787 2.527 2.477 2.450

MBVH/RS 3.058 2.734 2.631 2.577

+9.7% +8.2% +6.2% +5.2%
RayGrid 3.482 3.230 3.188 3.101

+24.9% +27.8% +28.7% +26.6%

Table 9: Performance of our scheme compared to base-line single-ray MBVH traversal and
MBVH/RS. Measured for five scenes, on a single core of a 3.8 Ghz Intel Xeon
processor, in 106 rays per second.

Depth primary 1
st

2
nd

3
rd

RayGrid
Interior 149.50 22.33 14.25 12.51

Leaf 77.87 12.26 7.39 6.36

Table 10: Average number of rays per visited node of a mini-MBVH in an octree leaf when
using the RayGrid algorithm. Measured for the Modern Room scene.

92

64 128 256 512 1024 MBVH/RS

L1 read hit 907.1 856.8 760.1 665.2 615.2 1023.0

L2 read hit 10.9 24.7 89.9 158.6 185.1 78.5

L3 read hit 9.7 8.2 6.7 6.5 11.0 31.0

mem read 11.2 11.4 11.7 11.7 11.6 6.6

L1 write hit 428.8 399.2 351.5 341.0 338.2 276.1

L2 write hit 63.0 124.9 279.6 361.5 369.4 111.7

L3 write hit 40.5 33.5 27.7 36.9 95.3 110.2

mem write 41.9 43.7 45.7 43.9 42.1 21.4

cost (est.) 5328.8 5234.6 5536.5 5915.1 6168.0 6872.6

L1% 68.1 65.5 54.9 45.0 39.9 54.1

L2% 2.3 5.2 17.9 29.5 33.0 10.1

L3% 7.1 6.1 4.7 4.3 7.0 12.9

mem% 22.6 23.2 22.5 21.2 20.1 22.9

Table 11: Detailed cache behavior for the Conference Room scene, rendered using the
RayGrid algorithm, measured for different batch sizes. Hit counts are in 106 hits
for a 512x512 image. Estimated cost in 109 cycles, assuming 4:11:39:107 cycle
latencies for L1:L2:L3:memory access. For comparison, the last column contains
figures for the original MBVH/RS algorithm (without octree traversal).

summing L1, L2, L3 and RAM accesses, multiplied by the respective latencies of
each level (4, 11, 39, 107 cycles on our test platform).

Compared to the MBVH/RS, the RayGrid algorithm achieves a significant re-
duction in L3 cache access. Although the number of RAM transfers increased, the
(estimated) overall cost of memory access is reduced.

5.5 conclusion and future work

In this chapter, we have investigated efficient ray tracing in the context of a path
tracer.

To improve the performance of CPU path tracing, we proposed a scheme that
improves data locality through breadth-first ray traversal. Our scheme is similar
to a scheme proposed by Pharr, but rather than reducing the cost of disk I/O, we
target the top of the memory hierarchy. Our algorithm improves on state-of-the-art
performance for ray distributions beyond the first diffuse bounce in a path tracer,
by batching rays in the leafs of a shallow octree. The improved data locality leads
to improved L2 cache efficiency and SIMD utilization.

We would like to further investigate the use of batching for improved data
locality, perhaps without relying on an octree data structure, which is currently
required for efficient leaf-to-leaf ray propagation. Alternatively, an implementation

93

on an architecture that allows for efficient gather / scatter would allow for more
efficient octree traversal, which might even lead to improved L1 cache efficiency.

94

6
G P U PAT H T R A C I N G

In this chapter, we investigate GPU path tracing in the context of real-time rendering
for games.

The performance of a game rendering engine is typically expressed in terms
of frames per second at a certain resolution. In a path tracer, this metric is not very
useful, since rendering time in a path tracer is strongly dependent on the number
of samples used to estimate the color of each pixel, and thus on the variance in the
final image. It makes more sense to express the performance of a path tracer in
terms of achievable quality within a certain amount of time. For games, the time
budget is game-type dependent, but must be considered to be less than 100ms.

This performance level may seem hard to achieve on today’s hardware. However,
there are mitigating aspects: the fact that the images are usually animated allows
for more variance than stills, and, although physically-based rendering has strong
advantages for games and game production, a somewhat loose interpretation of
’physically-based’ may be possible: some bias in our algorithms is acceptable, if
this leads to less variance in the produced frames. And finally, the production of
game scenery is typically a compromise between rendering engine capabilities and
limitations, and the desired art style. In an ideal situation, level art emphasizes
strong points of a renderer, and hides weak aspects.

In this chapter, we discuss efficient GPU path tracing, which we will combine
with CPU path tracing in the next chapter. We start with a discussion of previous
work. We then discuss efficiency issues of path tracing on streaming processors, and
variance reduction techniques suitable for a small time budget and low sampling
rates.

6.1 previous work

Recently, GPUs have rapidly evolved from fixed-function graphical co-processors
to general purpose streaming processors (for an overview, the reader is referred to
surveys by Borgo et al. [32] and Owens et al. [180]). The compute power of GPUs
makes them an attractive, albeit somewhat unapproachable platform for general
computing, including graphics research. Recently, several authors investigated
the efficiency of the path tracing algorithm on the GPU. In this section, we first
discuss work that deals with the fundamental underlying operation of ray / scene
intersection. We then review work that aims to map the path tracing algorithm itself
to the GPU. We conclude this section with an overview of the CUDA programming
model, which we used for our experiments.

95

6.1.1 GPU Ray / Scene Intersection

Since the introduction of general purpose graphics processing unit (GPGPU) pro-
gramming, many researchers have attempted to implement efficient ray traversal
algorithms on the GPU. Of these, Purcell et al. were the first to publish an efficient
GPU traversal algorithm [197]. Their algorithm ran in multiple passes and used a
uniform grid as underlying spatial structure.

Because uniform grids are not well suited to handle non-uniform geometry,
several researchers proposed traversal algorithms using a kD-tree as acceleration
structure. Foley and Sugerman proposed two stack-less multi-pass kD-tree traversal
algorithms, called kD-restart and kD-backtrack [81]. Horn and Sugerman improved
on this work and implemented the kD-restart algorithm as a single-pass algorithm
[108]. Popov et al. proposed an alternate stack-less kD-tree traversal algorithm
using links between adjacent tree nodes to steer traversal [196].

The introduction of NVidia’s GPGPU framework CUDA allowed for the im-
plementation of efficient stack-based GPU traversal algorithms. Günther et al.
proposed a packet traversal algorithm, using the BVH as a spatial data structure
[97]. In the algorithm, all rays in the packet share a single stack. Similar to CPU-
based ray packet traversal, all rays in a packet should have a similar origin and
direction for reasonable efficiency. Aila and Laine elaborately studied the SIMT
efficiency of stack based BVH traversal on the GPU and improved the efficiency
through the use of persistent GPU threads [7]. Their ray traversal kernels represent
state-of-the-art. Garanzha and Loop proposed a stack-less breadth-first packet
traversal algorithm. The algorithm traverses packet frusta through a BVH to locate
ray-leaf intersections. The rays are then tested against all triangles in these leafs
[86].

All packet traversal algorithms require packets of reasonably coherent rays in
order to achieve high performance [178]. Garanzha proposed to construct coherent
ray packets on the GPU by spatially sorting the rays and grouping them into
packets [86]. Aila and Laine found that even though their BVH traversal algorithm
does not use packets, it still benefits significantly from ray coherence. When the
rays traced by different threads in a GPU warp are relatively coherent, SIMT
efficiency is increased and the GPU caches become more effective, increasing
traversal performance [7].

Several GPU algorithms are developed to construct spatial structures. The most
notable of these are the kD-tree construction algorithm by Zhou [276] and the BVH
construction algorithm by Lauterbach [146].

6.1.2 GPU Path Tracing

Although a lot of research has been dedicated to efficient ray traversal algorithms
on the GPU, relatively little research has been targeted at the development of
complete unbiased rendering solutions on the GPU. Novák et al. proposed a
GPU path tracer which improves SIMT efficiency by regenerating paths that are

96

stochastically terminated by Russian roulette [171]. We will discuss this approach
in more detail in the next section.

Pajot et al. proposed a CPU/GPU hybrid BDPT approach, where the CPU gen-
erates camera and light paths and sends them to the GPU [181]. The GPU then
connects every camera path with every light path. The large number of connec-
tions ensures high GPU utilization. Their algorithm does not target interactive
performance, and does not scale well for multiple GPUs.

In his master thesis, Van Antwerpen presents a number of GPU-based unbiased
renderers [238]. The core idea is a data-centric system that operates on a stream of
samplers. The system switches between two phases: in phase one, the samplers
either create a primary ray, or extend an existing path. In phase two, the samplers
create explicit rays to the light sources. Ray/scene intersection happens between
phases, and the results of these queries are handled in opposing phases: phase one
handles the results of the explicit ray queries for the light sources (shadow rays);
phase two handles primary and extension rays. The two-phase system is general
enough to support BDPT [143, 241] and ERPT [47]. For the basic the path tracing
algorithm, it can be simplified by collapsing the two phases. Van Antwerpen refers
to this algorithm as streaming path tracing. We describe this algorithm in section
6.3.3.

Like Novák et al. and Van Antwerpen, Wald identifies SIMT efficiency as an
important factor in GPU path tracing performance [246]. He proposes to increase
SIMT efficiency by performing active thread compaction, turning multiple partially
filled warps into fewer, but fully-utilized warps. Although the method successfully
increases SIMT efficiency, only a modest performance improvement is reported.

Outside academia, several applications implement the path tracing algorithm on
the GPU, such as Octane [200], SmallPT [18], TokaSPT [24], SmallLuxGPU [124]
and NVidia’s Design Garage demo [175], which is based on the OptiX framework
[185]. Some of these achieve interactive frame rates for simple scenes and / or low
numbers of samples.

6.1.3 The CUDA Programming Model

Modern GPUs are stream processors [138, 59]. In its most basic form (uniform
streaming), a stream processor takes a data stream as input, applies a series of
operations (a kernel) to all elements in the data stream and produces an output data
stream. Data elements are processed independently, and can thus be processed in
arbitrary order, or in parallel. Modern GPUs achieve high throughput by operating
on data using many cores: as many as 1600 on recent models [128].

For our experiments, we used the CUDA parallel computing architecture [174],
although the concepts presented in this chapter do not use any CUDA-specific
features, and apply to other GPGPU architectures as well. This includes OpenCL
[139], Microsoft’s DirectCompute [157], and ATIs Stream [16].

At the highest level, a CUDA device consists of one or more Streaming Multipro-
cessors (SMs), comparable to CPU cores. Each SM executes blocks of warps. Each

97

Figure 32: The CUDA thread and memory hierarchy.

warp consists of 32 CUDA threads. The hardware executing one of these threads is
referred to as a CUDA core. The threads in a warp are executed in lock-step: all
threads in the warp must either execute the same instruction, or wait for the next
instruction. A single CUDA core thus bears resemblance to a SIMD lane, and an
SM bears resemblance to a CPU core executing 32-wide SIMD (Single Instruction
Multiple Data) instructions. This model is referred to as SIMT: Single Instruction
Multiple Threads, and can be considered an implicit form of SIMD, handled by
the hardware [150].

Like modern CPU cores, an SM can use a form of hyper-threading. Ideally, each
SM is assigned more than a single warp. The group of warps (up to 48) assigned to
a single SM is referred to as a block. The SM can switch between warps in a block.
This happens when one warp is stalled, e.g. awaiting a memory transfer. Switching
always happens for full warps, enforcing the strict lockstep between threads in
each warp. It is important to assign sufficient warps to each SM to allow it to hide
memory latencies as much as possible.

The CUDA memory hierarchy matches the thread hierarchy. At the lowest level,
each thread can access a number of registers, as well as cached, off-chip local memory.
All threads in a block share on-chip shared memory. Finally, all threads on all SMs
have access to off-chip, cached global memory1. The CUDA thread and memory
model is illustrated in figure 32.

1 On a hardware level, there is no difference between local memory and global memory: local memory
is mapped to global memory by the compiler.

98

A CUDA device is thus first of all a massively parallel compute device. Appli-
cation performance strongly depends on the utilization of all processing units,
as well as the availability of threads to switch to in case of stalls due to memory
latency.

Secondly, at the warp level, the lock-step model requires control flow coherence.
Threads in a warp are executed in parallel only if they agree on control flow. If this
is not the case, the threads are executed sequentially.

And finally, since potentially many threads are fighting for memory bandwidth,
it is far more likely for an application to be memory-bound than to be compute
bound. Threads should thus minimize memory access (especially incoherent access)
to prevent stalls.

6.2 efficiency considerations on streaming processors

Compared to the sequential execution paradigm, the streaming paradigm is more
restricted, but for suitable algorithms, it allows for very efficient code execution. As
discussed in the previous section, an algorithm is suitable for the streaming model
if it can be executed as many parallel tasks, that exhibit high flow coherence, and
use little memory bandwidth. An important metric for GPU efficiency is utilization,
which is defined as the average number of threads that is active at any point in
time, or: the average number of active threads per warp, scaled by average control
flow coherence per warp. As discussed in chapter 5, the path tracing algorithm
exhibits poor data locality. In this section, we show that, running on a streaming
processor, the path tracing algorithm also exhibits low parallelism. We investigate
the impact of data locality and parallelism on GPU path tracing efficiency. In the
next section, we discuss several ways to improve this efficiency.

6.2.1 Divergent Ray Traversal on the GPU

In chapter 3, we showed that CPU ray tracing performance strongly depends
on ray coherence. To better understand the relation between ray coherence and
GPU traversal performance, we replicate this test here for the GPU. For four
scenes, we chose a camera view, for which primary rays are traced. Per tile of 82

pixels, we increase the angle between primary rays by scaling the tile by a factor
D, where D = {1, 2, 4, 8, 16, 32} . We also test the performance of primary rays,
created randomly over a hemisphere on the camera plane, but with a common
origin. We use a hemisphere to prevent these rays from going backwards, since
two of the scenes have a blind wall behind the camera, which would influence the
measurements in an undesirable way. And finally, we measure performance for a
ray distribution in which rays have a random direction and origin.

The results are shown in table 12.
The results show that, in terms of absolute performance, for coherent primary

rays, the GPU is comparable to the CPU. However, the GPU is far less sensitive

99

D=1

79.9 112.2 109.7 95.6
100.0% 100.0% 100.0% 100.0%

D=2

79.5 116.5 108.9 95.9
99.5% 103.8% 99.4% 100.3%

D=4

78.2 116.1 107.2 94.8
97.9 103.5 97.8 99.2

D=8

76.6 112.2 103.6 92.7
95.9% 100.0% 94.4% 97.0%

D=16

65.4 97.3 90.7 81.2
81.9% 86.7% 82.7% 85.0%

D=32

55.8 78.6 76.6 67.8
69.9% 70.0% 69.9% 70.9%

rnd
51.5 63.1 73.9 64.5

64.4% 56.2% 67.4% 67.5%

rnd2

35.4 42.8 47.5 40.8
44.3% 38.1% 43.3% 42.7%

Table 12: Ray traversal performance for primary rays, with varying levels of divergence:
prior to traversal, the angle between primary rays for adjacent pixels is scaled
by a factor D. The rows labeled ’rnd’ are for random rays with a common origin.
Rows labeled ’rnd2’ are random rays with different origins on scene surfaces.
Measured in MRays/s. Figures in bold show relative performance compared to
D=1. Measured on a single NVidia GTX470 GPU, in millions of rays per second.

100

to ray divergence than the CPU: where CPU ray traversal efficiency drops to
30% or less for D=8, at this level of divergence the GPU maintains more than
94% of baseline performance. For D=32, this is still 70%. For random rays with a
common origin, performance does not drop below 50%, and for rays with both a
random direction and a random origin, performance is still at least 38% of baseline
performance. This is a promising result that suggests that the GPU should be a
suitable platform for path tracing, where ray coherence typically is very low.

Note that these measurements do not take into account memory bandwidth
required for shading.

6.2.2 Utilization and Path Tracing

The second factor that determines the efficiency of an algorithm running on a
streaming processor is utilization. In this subsection we investigate utilization
during the execution of the path tracing algorithm on a streaming processor.

The unbiased path tracing algorithm with Russian roulette is shown in algorithm
6.1. The algorithm aims to find a number of paths that connect the camera to
light sources, via zero or more scene surfaces, by performing a random walk. The
expected value of the average energy transported via these paths is the solution to
the rendering equation (see chapter 2). To improve the efficiency of this process,
two extensions are commonly used: Russian roulette is used to reduce the number
of paths that transport little energy2, and at each surface interaction, direct light is
explicitly sampled3.

Utilization during path tracing is illustrated in figure 33. In this figure, two
iterations of the while loop that extends a path are shown (lines 4-17 and 18-31).
The left half of the image shows the activity of the threads in a warp. If statements
result in a temporary stall of the threads for which the condition is not true. This
happens on line 8: in this example, only a single path encounters a light source, and
as a consequence, the SM temporarily works exclusively on this thread. On line 14,
some paths encounter a specular surface. For these paths, no explicit connection
to a light source is created. The expensive ray / scene intersection that is part of
function sampleDirect (line 15) is thus executed for only a portion of the threads,
while the others stall. Paths that leave the scene, as well as paths that reach a
light source, are terminated (line 7 and 11). These threads will remain inactive
until control flow reaches line 33. After the first iteration, a number of paths is
terminated by Russian roulette (line 17-18). As a consequence, utilization during
the second iteration is significantly lower.

Utilization may be further reduced by control flow divergence in acceleration
structure traversal code.

When executed as-is on a streaming processor, the path tracing algorithm exhibits
poor utilization.

2 This process is explained in more detail in subsection 2.1.6.
3 This approach is discussed in section 2.1.8.

101

Algorithm 6.1 The path tracing algorithm with Russian roulette and explicit light
sampling, in a format suitable for sequential execution. The final image is scaled
by 1

passes .
for each pass

for each pixel
crgb ← 0, scalergb ← 1

hitDiffuse← false−→
D ,O← ray throughpixel()

do
// find material, intersection point and normal along ray
m, I,

−→
N ← findnearest(O,

−→
D)

if (is empty(m))

break // path left scene
else if (is light(m))

if nothitDiffuse crgb ← crgb + scalergb ∗ getEmissive(m)

break // path hit light
else

O← I

if is diffuse(m)

crgb ← crgb + sample direct()

hitDiffuse← true−→
D , scalergb ← evalBRDF(m, I,

−→
D ,
−→
N)

p← RR(m)

if rnd() < p)break // russian roulette
scalergb ← scalergb ∗ (1− p)

while (true)
pixel[x,y]←pixel[x,y]+crgb

102

Figure 33: Utilization of a streaming processor executing the path tracing algorithm. Two
iterations of the while loop are shown. Path termination is indicated by a black
dot. After one iteration, on average 50% of the paths is terminated by Russian
roulette. Additional paths are terminated when a light source is encountered,
and when rays leave the scene. Ray / scene intersection is marked in red in this
figure, as this typically dominates run-time of the algorithm.

103

O=1

4.8 5.3 5.9 5.4
1.0x 1.0x 1.0x 1.0x

O=2

7.1 7.9 8.9 7.9
1.5x 1.5x 1.5x 1.5x

O=4

10.5 11.9 13.5 11.7
2.2x 2.2x 2.3x 2.2x

O=8

15.7 18.2 20.4 17.6
3.2x 3.4x 3.5x 3.3x

O=16

23.6 28.1 31.1 26.8
4.9x 5.3x 5.3x 5.0x

O=32

35.4 42.8 47.5 40.8
7.3x 8.1x 8.1x 7.6x

Table 13: Ray traversal performance for primary rays, with varying numbers of active
threads per warp. For O=32, all threads are active. Numbers in bold show the
relative performance compared to a single active thread. Measured on a single
NVidia GTX470 GPU, in millions of rays per second.

6.2.3 Relation between Utilization and Performance

Although the path tracing algorithm is ’trivially parallel’ due to the large num-
ber of independent samples that is required for each animation frame, the path
tracing algorithm suffers from poor utilization when executed on the streaming
multiprocessors of a modern GPU, due to control flow divergence. This notion by
itself does not mean that we should focus on improving utilization. Considering
that the path tracing algorithm suffers from poor data locality, it is possible that
low utilization is (partially) hidden by memory latency. We have therefore tested
the impact of low utilization by tracing divergent primary rays using a limited set
of active threads per warp. The results are shown in table 13.

When using only a single thread per SM for path tracing, performance lies
between 4.8M and 5.9M. In this scenario, a thread will never stall because of
memory transfer initiated by another thread. As soon as more threads are executed
on the same SM, performance of individual threads is reduced: two threads realize
only 1.5x of the performance of a single thread, reducing the performance of
individual threads to 75%; when 32 threads are active, per-thread efficiency drops
to 25%.

104

Figure 34: The five scenes used in our experiments: Sponza Atrium, modified by Crytek;
Escher; Lucy in the Sibenik Cathedral; Aztec; and MIS Test.

6.2.4 Discussion

On recent GPUs, inefficiency due to under-utilization is partially masked by limited
memory bandwidth. Equal to CPU path tracing, GPU path tracing requires random
access of scene data. Despite this, increasing utilization improves performance,
even for very divergent ray distributions: doubling the number of active threads
typically yields ~50% more rays per second. Interestingly, these gains hardly decline
as the number of active threads increases. This suggests that path tracing should
benefit from improved utilization: mostly for the primary rays, but also for path
segments beyond the first diffuse bounce.

Another factor that affects GPU ray tracing efficiency is coherence in the ray
distribution, albeit to a lesser extent than is the case on the CPU. The lower
sensitivity of the GPU to coherence (and thus data locality) is a result of the much
higher available memory bandwidth on the GPU: where the CPU used in chapter
5 has a bandwidth of 32GB per second, the GTX470 GPU has a bandwidth of
133.9GB per second.

Our experiments suggests that path tracing performance should benefit from
tracing all primary rays together to exploit their coherence. This should however
not be done at the expense of GPU utilization.

6.2.5 Test Scenes

For the remainder of this chapter, we will use the five test scenes shown in figure
34.

sponza atrium, crytek version This model is a modified version of the original
model by Marco Dabrovic. Crytek increased the polygon count, and added
more colorful materials, to make this scene representative of scenery used in
a modern game. The model consists of 270k triangles.

escher The Escher scene is rendered using a camera that hovers above a reflecting
sphere. Illumination is provided by many area lights. The scene is heavily
occluded, and bounded by reflective planes, which give the scene a recursive,
infinite appearance. The model uses a small polygon budget of 10k triangles.

105

lucy in the sibenik cathedral Also modeled by Marco Dabrovic, the Sibenik
Cathedral is a standard benchmark scene for ray tracing. We added an
optimized version of the Lucy statue with a glass material, to be able to test
complex dielectrics.

aztec scene Scene from the student game It’s About Time. This outdoor scene
consists of 150k triangles and has very little occlusion.

glass horse Scene designed to test multiple importance sampling, using large
area lights that intersect the walls. A glass chess piece was added to test
dielectrics.

In the following sections, we calculate the error of a rendered image by comparing
it to a converged image produced using the same technique. We used the root mean
squared error (rmse) as an error metric, calculated separately over the red, green,
and blue components of the image. For an unbiased estimator, the rmse is the
square root of the variance (i.e., the standard deviation).

6.3 improving gpu utilization

In this section, we discuss three approaches that aim to improve GPU utilization.
The first is an existing scheme by Novák et al., which increases utilization, but
at the same time mixes primary rays and subsequent path segments, resulting in
reduced data locality. The second scheme is a novel scheme, which trades variance
for utilization, but does not affect data locality. The third scheme is an existing
scheme by Van Antwerpen. This data-centric scheme improves utilization, and
does not affect variance nor data locality.

We first discuss the three schemes and their characteristics. In subsection 6.3.4
we evaluate the effect on efficiency of the schemes.

6.3.1 Path Regeneration

In their 2011 paper, Novák et al. propose to improve SIMT utilization by replacing
terminated paths with new paths [171]. The new paths can either be full paths
that start at the camera, or paths that start at the primary intersection point, in
which case they help to reduce variance in indirect lighting. Path regeneration is
motivated by the observation that threads for which paths have been terminated
are idling, which means that any work they carry out instead of idling is essentially
for free.

The path regeneration algorithm and its effect on utilization is shown in figure
35. The first iteration of the loop is identical to algorithm 6.1. At the start of each
subsequent loop iteration, terminated paths are replaced by new paths (shown in
green). Once the requested number of paths for a pixel has been started, no new
paths are generated. The active paths continue until all paths either left the scene,

106

hit a light source, or have been terminated by Russian roulette. The authors refer
to this final stage as the closing phase. This phase is needed to avoid bias in the
final estimate. During this stage, the algorithm behaves as the original path tracing
algorithm, and GPU utilization decreases.

Figure 35 shows that utilization in the path regeneration algorithm is significantly
higher than in the reference path tracer. The path regeneration algorithm does not
yield full GPU utilization:

• New paths are started at the beginning of a loop iteration. Therefore, threads
that terminated early in the previous iteration will idle until this point is
reached. One example of this is shown on line 8 of figure 35: a path that
leaves the scene will cause the associated thread to be inactive while the other
threads execute most of the remaining loop code, including the expensive
direct light estimation (which involves a ray / scene intersection). Only paths
terminated by Russian roulette are replaced instantly.

• The code for the actual path restart is typically executed for a subset of the
threads in a warp. During this process, GPU utilization decreases. For most
scenes this is only a minor issue.

• When the number of samples per pixel is low, the cool-down period may
take up a considerable portion of the total run time. This is especially true for
scenes in which paths consist of many ray segments. During this cool-down
period, utilization may be considerably lower.

• When using a predetermined number of samples per pixel, it is still possible
for a thread to finish the work well before other threads. This may result in
extended low GPU utilization during the cool down period.

The last issue can be evaded if we do not enforce a fixed amount of samples per
pixel. Instead, we define a segment budget, which we estimate as the product of
the desired number of samples per pixel and the average path length. Instead of
looping over paths (as in the original algorithm), we now loop over segments. Once
the budget is depleted, all threads in the warp simultaneously enter the closing
phase.

6.3.2 Deterministic Path Termination

Russian roulette is commonly used to focus computation on paths that contribute
most to the final estimate. When an integral is approximated through Monte Carlo
integration using N samples, we can stochastically remove samples from this set
with probability p without introducing bias by multiplying surviving samples by
1
p . In this process, p can be chosen arbitrarily, as long as 0 < p < 1. Furthermore,
p is typically chosen per sample, based on an estimate of the contribution of the
sample. Arvo and Kirk propose to base p on surface albedo (i.e, the probability
that an incident particle will be re-radiated after collision [14]). Pharr et al. base

107

Figure 35: Utilization of a streaming processor executing the path regeneration algorithm.
Two iterations of the while loop are shown. After one iteration, the inactive
threads restart paths at the camera or the primary intersection point. During
the second iteration of the loop, utilization is significantly higher than in the
original algorithm.

108

Figure 36: Russian roulette applied to a set of 128 paths, where each path is terminated
with a 50% probability at each vertex. The top graph shows the depth reached
by each path. The lower graph shows the same paths, sorted by reached depth.

p on the green component of the current path throughput [187]. Keller proposes
to use a global termination probability, and states that this is a reasonable choice
for most scenes [132]. A global termination probability may however cause infinite
variance [231].

Regardless of the termination probability p, reducing the number of samples
increases variance. However, removing samples also reduces overall sampling cost.
By balancing variance and sampling cost, Russian roulette aims to improve the
efficiency of the estimator [241].

In this subsection, we describe an algorithm that relies on a fixed termination
probability of 50%.

Consider the following situation: we render a closed scene with diffuse materials
only. At each surface interaction, we use Russian roulette to terminate paths with a
probability of 50%. In this setup, 100% of the paths will be active for the first path
segment. For the second segment, on average 50% of the paths is still active. For
N paths, the expected number of active paths drops below one for path segment
log2N.

This case is illustrated in figure 36. The top graph shows one possible outcome
for a set of 128 paths. In this experiment, each path reached a depth between 1

and 7. Note that there is no maximum depth: the probability of at least one path
reaching depth N is greater than zero for any 0 < N <∞. The bottom graph shows
the same samples, sorted by the depth they reached. Approximately 50% of all
paths is terminated at the first surface interaction, and 25% at the second (reaching
a depth of 2), and so on.

Since there is no dependency between paths, the order in which paths are
constructed does not affect the estimate. If it were possible to know beforehand the

109

number of rays that will reach a certain depth, we could group these rays. For a
fixed termination probability, this is possible, if we directly use the expected size of
each group, rather than relying on the result of a stochastic experiment. For a fixed
termination probability of 50%, for a total of N paths, this will yield a group of
N/2 paths that consist of one segment, a group of N/4 paths of two segments, and
so on. Using this approximation, N samples per pixel correspond to a maximum
recursion depth of log2N. When N approaches infinity, the maximum recursion
depth approaches infinity as well, removing all bias from the approximation. Until
this point, the approximation is biased. The proposed grouping is obtained when
we express the maximum depth for a path as a function of the current sample
index: dmax(idx) = floor(log2 (spp− idx)) + 1. For spp = 16, this function yields
the following output: 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5. When the number of
samples per pixel is a power of 2, this can be efficiently expressed in CUDA using
the __clz function, which returns the number of leading zeroes of a binary number:
maxdepth=(__clz((spp-1)-idx)-__clz(spp))+1.

The reformulated path tracing algorithm with deterministic path termination
(DPT), where Russian roulette is replaced by a loop of a predetermined number of
iterations, is shown in algorithm 6.2.

Like the path regeneration algorithm, DPT does not yield full utilization. In fact,
utilization will be lower: although Russian roulette no longer effects utilization,
paths that leave the scene or reach a light source will still terminate. Unlike the path
regeneration algorithm, DPT does not replace these paths. DPT has an important
benefit over path regeneration: at any point in time, all active threads in a warp
will process path segments of the same depth.

The coarse approximation of the Russian roulette termination probability will
result in increased variance. Whether the increased utilization outweighs the
increase in variance depends on the scene. For scenes with specular surfaces, the
50% termination probability is a poor choice. Scenes that are dominated by diffuse
BRDFs generally exhibit little increase in variance.

6.3.3 Streaming Path Tracing

Where the previously described algorithms either trade data locality for GPU uti-
lization (section 6.3.1) or variance for GPU utilization (section 6.3.2), the algorithm
described in this subsection aims to maintain both. Our implementation is based
on the work by Van Antwerpen, and referred to as s streaming path tracing (SPT)
[239].

The SPT algorithm uses a fixed thread pool to work on a stream of N samples
(see figure 37). Initially, the stream is filled with N primary rays (green). During
each iteration the rays are advanced, and new path segments are created. The new
path segments are stored in two output streams. The first output stream receives
explicit light rays that are used to estimate direct light (red). The second output
stream receives path extension rays, which sample indirect illumination (blue).

110

Algorithm 6.2 The path tracing algorithm with deterministic path termination
(DPT). The outer loop (over the screen pixels) is not part of the actual GPU kernel;
i.e., one kernel execution determines the final color of one pixel.
for each pixel

crgb ← 0

forpass = 0 topasses−→
D ,O← ray throughpixel()

scalergb ← 1

maxdepth← log2(pass+ 1) + 1
ford = 0 tomaxdepth

// find material, distance and normal along ray
m, I,

−→
N ← findnearest(O,

−→
D)

if is empty(m)

break // path left scene
else if is light(m))

crgb ← crgb + scalergb ∗ getEmissive(m)

break // path hit light
else

O← I

if is diffuse(m)

crgb ← crgb + sampleDirect()
hitDiffuse← true−→

D , scalergb ← evalBRDF(m, I,
−→
D ,
−→
N)

scalergb ← scalergb/(1− 0.5)
pixel[x,y]←crgb/passes

111

Figure 37: Russian roulette applied to a set of 128 paths, where each path is terminated
with a 50% probability at each vertex. The top graph shows the depth reached
by each path. The lower graph shows the same paths, sorted by reached depth.

Both output streams are compacted on-the-fly, by storing emitted segments to the
first empty slot in the output stream.

When the N threads finish processing the input stream, both output streams
contain 0..N path segments. The M2 rays that were stored in output stream 2 (the
direct light rays) are now traced by the first M2 threads. Output stream 1, which
contains M1 rays, is appended with N−M1 new primary rays (yellow), so that it
contains exactly N active samples. These samples are the input for the next loop
iteration.

Since the SPT algorithm uses path regeneration, each loop iteration beyond
the first processes path segments of different depths. However, because of the
compaction, the set of samples is strictly partitioned in sets of path segments of
the same depth. When the stream length is sufficiently large, the majority of warps
of 32 threads will thus be working on path segments with similar coherence.

Note that the SPT algorithm is data centric. Between processing steps, all data
for each sample is explicitly stored to global memory. A path is thus not associated
with a single thread, as in the previously described algorithms. This is illustrated in
figure 37. Here, N samples are advanced, emitting N new samples. Output stream
1 consists of extended paths (green) and newly generated paths (yellow). Some
explicit light rays are also generated (red) and stored in output stream 2. Note that
the samples in output stream 1 are implicitly sorted into extended paths and newly
generated paths. Also note that no thread will be inactive, until no new samples
are left to generate.

6.3.4 Results

We have implemented the three algorithms described in this section, and measured
their performance. The results are shown in table 14.

The table shows that path regeneration successfully increases the raw ray
throughput for most scenes, albeit often by a small margin. For the Lucy scene,
the gains are as high as 30% at 32spp. The improved throughput comes at a price
however: the error of the produced image at 32spp exceeds the error of the ref-
erence path tracer. This happens because the path regeneration algorithm must

112

8spp 16spp 32spp

method scene ms rmse mrays ms rmse mrays ms rmse mrays

Ref

Sponza

77 27.39 72.2 153 20.72 71.8 305 15.37 71.6
PR 73 27.79 74.5 154 20.87 70.5 319 15.49 67.8
DPT 66 31.95 77.0 138 24.90 74.9 282 18.90 74.0
SPT 66 23.01 78.6 129 17.68 76.6 255 13.63 78.0

Ref

Escher

123 28.63 75.4 245 22.88 75.2 488 18.07 75.2
PR 78 33.55 83.4 157 27.17 80.4 316 21.69 78.6
DPT 51 38.18 111.1 107 31.44 107.8 220 25.30 105.8
SPT 93 29.35 91.9 182 23.08 93.3 360 18.06 93.7

Ref

Lucy

142 32.04 47.9 281 22.99 47.9 560 16.71 47.9
PR 99 34.73 62.2 194 25.38 62.2 382 18.85 62.3
DPT 70 38.27 80.9 146 28.68 79.1 296 21.66 78.7
SPT 95 34.50 69.5 183 24.55 72.1 360 17.93 73.1

Ref

Aztec

21 12.81 206.9 42 8.63 200.4 82 6.03 202.1
PR 21 14.12 240.1 43 9.07 228.7 88 6.21 220.4
DPT 17 16.20 220.1 34 10.82 212.8 69 7.52 206.1
SPT 21 12.56 204.9 41 8.46 199.4 81 5.91 196.8

Ref

Horse

78 39.88 110.7 154 31.16 110.9 306 24.42 111.1
PR 62 43.47 108.9 380 34.04 34.5 206 26.64 125.8
DPT 29 46.04 195.0 59 36.84 193.1 119 29.20 192.3
SPT 58 41.01 133.1 112 31.64 136.0 220 24.66 138.2

Table 14: Timings in milliseconds, root mean squared error and raw ray throughput (in
millions of rays per second) for the reference path tracer (Ref), path regeneration
(PR), deterministic path termination (DPT) and streaming path tracing (SPT) for
the five test scenes. Performance in millions of rays per second, measured on two
GTX470 GPUs.

113

Figure 38: Rendering time versus error for Sponza, Escher, Lucy and Glass Horse, for the
reference path tracer (Ref), path regeneration (PR), deterministic path termina-
tion (DPT) and streaming path tracing (SPT).

estimate a segment budget based on the requested number of samples per pixel. If
this estimate is too low, variance will increase. This is compensated somewhat by
the restarted paths, but this does not lead to improved efficiency in all cases.

Figure 38 shows graphs of rendering time versus error for four scenes. The
graphs reveal that in fact for none of the four scenes path regeneration improves
efficiency.

Deterministic path termination shows a similar problem. The algorithm increases
ray tracing performance, in excess of 70% for the Glass Horse scene, but this comes
with a significant increase in variance. Still, DPT outperforms the other schemes
for this scene. For all other scenes, SPT is the fastest algorithm. Note that for the
Aztec scene, none of the algorithms perform significantly better than the reference
path tracer. Most paths are very short for this scene, which makes the reference
path tracer an efficient algorithm.

Using two standard GPUs, all scenes can be rendered with at least 8spp at 10

fps. For the Aztec scene, we achieve 32spp at a frame rate that exceeds 10fps. For
all sample counts, variance for the Aztec scene is also significantly lower than for
the other scenes.

114

Figure 39: The five test scenes rendered at 10fps on two GTX470 GPUs. At a resolution of
512x512 pixels, all scenes can be rendered with 8spp, resulting in considerable
noise. The Aztec scene still runs at 10fps for 32spp. At this point, the generated
images are almost converged.

6.4 improving efficiency through variance reduction

In the previous sections, we sought to improve the efficiency of the path tracing
algorithm by improving GPU execution of the algorithm on a low level. In this sec-
tion, we evaluate the effect of common variance reduction techniques on efficiency,
in the context of interactive rendering of game scenes.

6.4.1 Resampled Importance Sampling

Resampled Importance Sampling (RIS), as discussed in chapter 2, is a technique
that aims to improve the pdf used in importance sampling. The pdf ideally is
proportional to the function that we are sampling. According to the rendering
equation, direct light reflected by a surface point is the sum of light arriving from
all light sources, scaled by the BRDF of the surface material. The light arriving
from one light source is the product of its intensity, its projected solid angle, and a
visibility factor.

The pdf used to sample light sources could thus be based on the intensity and
projected solid angle of the light source and the BRDF of the material. This is not
efficient: the pdf must be determined for each surface interaction, and requires
evaluation of all light sources. The time complexity of this approach is O(N),
where N is the number of lights. If we instead base the pdf on location-invariant
data, we can use the same pdf for all surface points. The data that is available
for constructing this pdf is limited: we can only use the intensity and the area of
the light sources. As a result, the pdf is a crude approximation of the sampled
function.

When using RIS for the direct light estimate, we use the location-invariant pdf to
make a first selection of light sources. We then calculate the more accurate potential
contribution of the lights in this set, taking into account the surface BRDF and
projected solid angle of the light source. We then chose one light from the set, with
a probability proportional to the potential contribution.

115

Algorithm 6.3 Efficient implementation of Resampled Importance Sampling.
L[0..X− 1]← RandomPointOnLight(lightArray[rnd() ∗M]) − P

cost[0..X− 1]← BRDF ∗ ProjectedSolidAngle(P,L[0..X− 1])

r← rnd() ∗
∑
cost

sum← 0

for i = 0 toX− 1

sum← sum+ cost[i]

if (r 6 sum) returnL[i]

6.4.2 Implementing RIS

We propose the following efficient implementation of RIS.
Prior to rendering a frame, we construct the pdf based on the location invariant

properties of the set of light sources. We use this pdf to fill an array of a fixed
size M. For N lights, this array is partitioned in N parts. All array elements in
one part point to the same light. Without any scaled probability, each light would
thus use M/N array elements. By scaling the parts, we scale the probability of
selecting a particular light source. A light can now be selected from this array
using a single random variable, using a single array look-up. During direct light
estimation, we use the array to fill a small array of X elements with lights, randomly
selected according to the precalculated pdf. For each of the X lights, we estimate
the contribution, this time taking into account the BRDF of the material and the
projected solid angle of the light source. The estimated contributions are used to
construct a cdf for the X lights. Finally, the cdf is used to select a single light source.
The process is summarized in algorithm 6.3.

Note that the variance of the estimator reaches a minimum when X equals M. In
this case, all lights are considered using the accurate contribution estimate. The
cost of the algorithm will be equal to O(N). Instead of minimizing variance for
a set of samples, we would like to maximize efficiency. In practice, a substantial
reduction of variance is obtained for a relatively small value for X. We found that
for most scenes, it is worthwhile to always pick two points on each light source.
For larger light sources, we get the second sample at a very low cost, because the
additional calculations use the same cached data. For small light sources, the extra
samples do not improve the pdf, but the wasted calculations are negligible.

6.4.3 Multiple Importance Sampling

Multiple Importance Sampling (MIS) uses two rays to improve the direct light
estimate (see chapter 2): one is created using a pdf proportional to the surface
BRDF; the other proportional to the light pdf. The values of these samples are then
weighted using a heuristic, based on the pdfs.

In practical scenes, rays created according to the surface BRDF seldom reach the
same light source as rays created by explicit light sampling. In such scenes, MIS

116

8spp 16spp 32spp

method scene ms rmse mrays ms rmse mrays ms rmse mrays

Ref
Sponza

77 27.4 72.2 153 20.7 71.8 305 15.4 71.6
RIS 95 18.7 70.4 188 13.9 70.6 374 10.1 70.6
RIS/MIS 98 18.7 71.3 191 13.9 70.9 377 10.1 70.8

Ref
Escher

123 28.6 75.4 245 22.9 75.2 488 18.1 75.2
RIS 149 20.8 70.2 296 15.9 70.1 588 12.1 70.4
RIS/MIS 151 18.2 70.9 298 13.4 70.5 592 9.6 70.4

Ref
Lucy

142 32.0 47.9 281 23.0 47.9 560 16.7 47.9
RIS 169 18.4 50.8 335 13.7 50.9 664 10.3 51.2
RIS/MIS 173 18.3 51.2 338 13.6 51.2 667 10.2 51.3

Ref
Aztec

21 12.8 206.9 42 8.6 200.4 82 6.0 202.1
RIS 28 12.7 179.7 55 8.6 176.7 108 6.0 177.0
RIS/MIS 28 12.7 184.0 55 8.6 179.2 109 6.0 176.8

Ref
Horse

78 39.9 110.7 154 31.2 110.9 306 24.4 111.1
RIS 92 24.3 98.9 183 18.5 98.5 363 14.3 98.8
RIS/MIS 94 16.3 99.1 185 11.3 98.5 365 8.1 98.8

Table 15: Timings in milliseconds, root mean squared error and raw ray throughput (in
millions of rays per second) for the reference path tracer, with and without RIS
and MIS.

would almost double the number of rays used for direct light sampling. We can
prevent this if we reuse the BRDF ray for the indirect light estimate.

6.4.4 Results

We have implemented RIS and MIS as modifications to the reference path tracer,
and measured the efficiency of the algorithms for the five test scenes. The results
are shown in table 15.

6.5 discussion

In this chapter, we investigated factors that determine GPU path tracing perfor-
mance, with the aim to maximize efficiency at low sampling rates, where ’efficiency’
can be defined as variance reduction over time, and ’low sampling rates’ are those
that can be achieved in real-time, in the context of a game. We found that utilization
(the number of active threads at any point in time) is one such factor. Another
factor is ray coherence.

117

Figure 40: Rendering time versus error for Sponza, Escher, Aztec and Glass Horse, for the
reference path tracer, with and without RIS and MIS.

We proposed a novel deterministic path termination scheme (DPT) that improves
GPU utilization at the cost of variance, by using a fixed termination probability
for Russian Roulette. Besides this scheme, two other algorithms that aim to im-
prove utilization were discussed. Although utilization did increase, in many cases
efficiency did not improve: in the case of the path regeneration algorithm, this is
caused by reduced coherence in the ray set; for the DPT algorithm, the increase in
variance adversely affects efficiency. We found that the SPT algorithm, which does
not sacrifice variance nor coherence, performs best for many scenes. In the Glass
Horse scene, DPT performs better than SPT. In all cases, the improvement over the
reference path tracer is small: on average, an improvement of only 20% is achieved.

At low sample rates, variance reduction techniques such as RIS and MIS further
improve efficiency. Especially MIS, which requires extra computation but not extra
data transfer, is suitable for GPU path tracing. RIS and MIS do not significantly
improve efficiency for the outdoor Aztec scenes, where global illumination is
dominated by direct light, and paths are short.

During our tests, we found that certain scenes perform significantly better than
others, both in terms of ray throughput and variance. The outdoor Aztec scene
exhibits little variance, even at low sampling rates, and can be rendered in real-time
on modern consumer hardware. The reason for this is the low occlusion between
the scenery and the light source, and the low average path length. Game design

118

should take this into account, by focusing on scenes with large light sources, and
little occlusion.

In the next chapter, we will use the GPU path tracing building blocks discussed
in this chapter to build a physically-based renderer for games.

119

7
T H E B R I G A D E R E N D E R E R

In this chapter, we present the Brigade renderer, which uses the path tracing
algorithm to produce images for real-time games.

The typical target platform for a modern game is a heterogeneous system, con-
sisting of a multi-core CPU and one or more GPUs. Considering the computational
demands of the path tracing algorithm, resources should ideally be used to their
full potential.

The three main subtasks in a path tracer are acceleration structure maintenance,
ray traversal, and shading. When these tasks are not executed by a single processor
(either CPU or GPU), the synchronization of data between the processors becomes
a fourth significant task. Execution efficiency now depends on two factors. The first
is specialization: subtasks should be assigned to the processor that executes them
in the least amount of time. The second is system utilization: execution efficiency
can only be optimal when none of the processors is idling at any time during
rendering.

The architecture described in this chapter assigns acceleration structure main-
tenance to the CPU cores, while one or more GPUs trace paths and perform
shading. By double-buffering the acceleration structure, data synchronization can
be executed in parallel to the GPU tasks, and the time between GPU tasks is
minimized.

Although this work division does employ both the CPU and GPU, by itself
this does not guarantee full utilization of the system. Full utilization is achieved
when we implement acceleration structure maintenance and path tracing on both
processors, and allow each processor to use idle time to contribute to the task of
the other processor. This comes at the expense of a considerable engineering effort,
which may be worthwhile only if the amount of idle time is significant.

In the following sections, we describe the architecture of the Brigade renderer. We
discuss workload balancing, as well as approaches to maintain a real-time frame
rate. At the end of this chapter, we describe two games that have been created
using Brigade.

7.1 background

Historically, games have been an important driving force in the advance of graphics
hardware and rendering algorithms. Effort has evolved from striving for abstract,
visually pleasing results, to more plausible realistic rendering. In the former, a
distinct visual style is chosen, which does not necessarily require realism. Instead,
over the top animation styles and matching graphics are used. Examples of this

121

Figure 41: Two examples of modern games that use a non-realistic, distinct visual style.
Left: Super Mario Galaxy, right: Okami.

Figure 42: Two examples of modern games that aim for a high level of realism. Left: Tom
Clancy’s H.A.W.X., right: Gran Tourismo 5.

approach are most early 2D computer games, as well as more recent titles such as
Super Mario Galaxy [161] and Okami [127] (figure 41).

Many modern games strive for realistic graphics, where the goal is to convince
the player that the result is (or could be) realistic. Examples are racing games
such as the Gran Tourismo series [272] and flight simulators such as Tom Clancy’s
H.A.W.X. [219], which augment the rasterization algorithm with various algorithms
to add secondary effects such as shadows, reflections and indirect illumination
(figure 42).

Recently, efforts are being made towards physically correct results. For static
scenery and a static light configuration, this can be achieved by precalculating
global illumination, or by coarsely calculating radiosity. Examples of this are games
based on the Unreal 3 engine [230] (figure 43).

The fundamental algorithm used in renderers for games is the z-buffer scan
conversion algorithm. The availability of dedicated hardware for z-buffer scan
conversion has created a strong dependence on this algorithm, and has led to a
huge efficiency gap between z-buffer scan conversion and the more versatile ray
tracing algorithm.

Recently, Whitted-style ray tracing and distribution ray tracing have been shown
to run in real-time, or at least at interactive frame rates, on CPUs and GPUs, as
well as the streaming processors of modern consoles (see e.g. [248, 27, 34, 178];
[197, 81, 108, 7]; [21, 227]).

122

Figure 43: Precalculated global illumination, calculated using Unreal technology. Left:
Mirror’s edge, lit by Beäst. Right: scene lit by Lightmass.

Despite the availability of real-time ray tracing, games predominantly use ras-
terization for rendering virtual worlds1. This complicates the advance towards
physically based rendering, where realism is not approximated empirically, but accu-
rately simulated.

Physically based rendering of virtual worlds has strong advantages. The obvious
advantage is image fidelity. Perhaps of equal importance however is production
efficiency. Whereas lighting for a level in a rasterization-based engine typically
requires a designer to work around technical limitations of the renderer to make
the lighting look right, physically based rendering naturally leads to correct lighting,
which limits the design effort to a creative process alone.

Of the available physically based rendering algorithms, stochastic ray-tracing
based methods (path tracing and derived methods) are favored over finite element
methods, due to their elegance and efficient handling of large scenes. Unlike raster-
ization based approaches, path tracing scales up to photo realism with minimal
algorithmic complexity: the only dependencies are compute power and memory
bandwidth. Both increase over time. Moore’s law states that the number of transis-
tors that can be placed inexpensively on an integrated circuit rises exponentially
over time [162]. Although the link between transistor count and application per-
formance is complex, the latter follows the same pattern, with compute power
increasing at 71% per year on average, and DRAM bandwidth at 25% per year
[179].

Assuming that all other factors remain constant (e.g., scene complexity, screen
resolution), it can thus be assumed that there will be a point where physically
based rendering is feasible on consumer hardware.

7.2 previous work

Interactive path tracing was first mentioned in 1999 by Walter et al. as a possible
application of their Render Cache system [258]. Using their system and a sixty-

1 Exceptions exist, e.g. [79, 58, 190, 74, 63]. These games reached only a small audience, or where not
developed with commercial intentions.

123

core machine, a scene can be navigated at interactive frame rates. During camera
movement, samples are cached and reprojected to construct an approximation for
the new camera view point. New samples are created for pixels with a relatively
large error. The image converges to the correct solution when the camera is
stationary.

Sadeghi et al. use ray packets for their path tracer [206]. Coherence between rays
on the paths of block of pixels is obtained by using the same random numbers for
all pixels in the block. This introduces structural noise, but remains unbiased. The
system is CPU based, and achieves about 1.2M rays per second per core of an Intel
Core 2 Quad running at 2.83 Ghz.

In their 2009 paper, Aila and Laine evaluate the performance of various ray
traversal kernels on the GPU [7]. Although they did not aim to implement a full
path tracer, their measurements include a diffuse bounce, for which they report
nearly 50M rays per second on an NVidia GTX285, not including shading.

More recently, Novák et al. used GPU path tracing with path regeneration
to double the performance of the path tracing algorithm on stream processors
[171]. Their system is able to render interactive previews on commodity hardware,
achieving 13M rays per second on an NVidia GTX285 on moderately complex
scenes, and is claimed to be “the first efficient (bidirectional) path tracer on the
GPU”. Van Antwerpen proposed a generic streaming approach for GPU path
tracing algorithms, and used this to implement three streaming GPU-only unbiased
rendering algorithms: a path tracer, a bidirectional path tracer, and an energy
redistribution path tracer.

Outside academia, several applications implement interactive path tracing. Ex-
amples are Octane [200], SmallPT [18], TokaSPT [24], SmallLuxGPU [124] and
NVidia’s Design Garage demo [175].

7.3 the brigade system

A renderer for games has specific requirements, which differ significantly from
other applications. Of these, the requirement of real-time performance probably
has the greatest overall impact on the design of a renderer. A modern game runs at
60 fps or more. For certain genres, a lower frame rate is acceptable. For the game
Doom 4, a fixed frame rate of 30 fps is enforced by the renderer [37].

Frame rate translates to a strict millisecond budget, which must be divided over
all subsystems. Note that if we chose to run the subsystems in order, the budget
available to rendering decreases. If, on the other hand, we run the subsystems and
rendering in parallel, we introduce input lag: in a worst-case scenario, user input
that occurred at the beginning of frame N will be rendered in frame N+ 1, and
presented to the user just before frame N+ 2 starts.

Apart from real-time performance, rendering for games requires dynamic scenery.
Scene elements may undergo complex movement due to physics as well as hand-
crafted animations and procedural effects such as explosions. Contrary to popular

124

Figure 44: Functional overview of the Brigade renderer, combined with a generic game
engine.

belief, global changes to scenery are uncommon in games. Typically, large portions
of the scenery are static, to avoid game states in which the user cannot progress.

Tightly coupled to the real-time requirement is the fact that games are interactive
applications. The renderer must produce correct results for all possible user input,
and cannot predict any scenery changes that depend on user interaction.

On top of the generic requirements, there are requirements that evolve over time,
most notably rendering resolution and scene complexity. At the time of writing, a
typical game renders at a resolution of at least 1280x720 (HD 720). A typical scene
consists of hundreds of thousands of polygons.

The Brigade rendering system is designed specifically for games, and applies
and encapsulates the technology of chapter 6 in this context. The rendering system
achieves high performance by fully utilizing all compute devices in a heterogeneous
architecture (subsection 7.3.2). It implements a synchronization-free balancing
scheme to divide the workload over these compute devices (subsection 7.3.3).
Adaptive converging (subsection 7.3.5) and dynamic workload scaling (subsection
7.3.7) are used to ensure a real-time frame rate at high-definition resolutions.

7.3.1 Functional Overview

Figure 44 provides a functional overview of the Brigade renderer. In a typical setup,
Brigade is combined with a more generic game engine that provides components
not specific to the rendering algorithm, such as artificial intelligence and physics
libraries.

The main components of Brigade are:

scene graph The scene and hierarchical scene graph contain all data required for
rendering. This includes the object hierarchy, mesh data, materials, textures,
cameras and lights. The object decomposition represented by the scene graph
is used to steer acceleration structure construction, which makes the scene
graph an essential data structure within the system. For convenience, the
scene graph object implements keyframe- and bone animation.

125

core The core implements the Render() method, initiates acceleration structure
updates, synchronizes scene data changes with the compute devices and
divides work over the tracers, if there is more than one.

acceleration structure updater The acceleration structure updater main-
tains the BVH, by selectively rebuilding parts of the acceleration structure
based on changes in the scene graph.

tracers A tracer is an abstract representation of a compute device or group of
similar compute devices. A ’compute device’ in this context can be a GPU,
the set of available CPU cores, or a compute device connected over a network.
The tracer holds a copy of the scene data and the acceleration structure,
and implements the path tracing algorithm with next event estimation and
multiple importance sampling. Tracers are assumed to produce identical
output for identical input2. Each tracer is responsible for a part of the screen,
and emits pixels to an integer or floating point output surface.

The acceleration structure used by the tracers is the only cached data structure that
is derived from scene data. All other data can be modified on-the-fly. This includes
(all properties of) materials, lights and cameras.

In this system, the governing processes run on the CPU, and tracers (which in a
typical setup primarily run on the GPUs) function as workers.

7.3.2 Rendering on a Heterogeneous System

A modern PC is a heterogeneous architecture, which typically consists of a CPU
with multiple cores, and at least one GPU.

To efficiently use the available compute power, several options are available:

1. The rendering algorithm is implemented completely on either the CPU or
the GPU;

2 Except for non-deterministic aspects of the rendering algorithm.

Figure 45: Double buffering the BVH. The CPU updates the BVH and sends changes to the
tracers. Each tracer processes the changes in the commit buffer before rendering
the next frame.

126

Figure 46: Tracer thread initialization and main loop.

2. The rendering algorithm is implemented on both the CPU and the GPU;

3. Tasks are divided over CPU and GPU.

Each of these options has advantages and disadvantages. A renderer that runs
entirely on either the CPU or on the GPU may result in under-utilization of the
other compute device. An algorithm that is implemented on both the CPU and
the GPU will use all resources, but requires more implementation effort. Dividing
tasks over CPU and GPU seems the most attractive option. This is however only
efficient when CPU and GPU spend equal amounts of time on their assigned tasks.

A fourth option is to use a hybrid solution, where the CPU has specific tasks,
and uses the frame time that remains to assist the GPU. This is the approach
implemented in our system. The CPU is responsible for game logic and acceleration
structure maintenance, while the tracers perform the actual rendering. Assuming a
CPU tracer is available, this system is able to keep compute devices fully occupied.
The process is illustrated in figure 45.

For each frame, the CPU updates the game state. The resulting changes to the
scene graph are then translated to a new BVH. The changes to the BVH, as well as
any other scene changes, are sent to the tracers, where they are placed in a commit
buffer, which the tracers use to iteratively update a local copy of the scene.

Parallel to these activities, the tracers render using the data that was prepared
in the previous frame. A tracer starts a frame by processing the changes in the
commit buffer, and then renders a part of the frame. CPU tracers are handled
slightly differently than GPU tracers, by postponing rendering until the acceler-
ation structure has been updated. This prevents that rendering interferes with
acceleration structure maintenance.

When no CPU tracer is available, the CPU can execute game code that does not
affect the scene graph after copying scene changes to the commit buffers of the
tracers.

7.3.3 Workload Balancing

The Tracer flow is shown in figure 46. Upon instantiation, the tracer spawns a
thread that executes the worker loop. This loop waits for a signal from the core,
renders a number of pixels, and signals the core, before going to sleep until the
next frame.

When more than a single tracer is available, the core estimates an optimal
workload division prior to rendering each frame. The advantage of this approach is
that no communication between the tracers and the core is required once rendering

127

Figure 47: Render cost visualized: pixels representing the sky dome or light sources have a
significant lower cost than other pixels. Cost is represented by greyscale values
(brighter is higher cost), per 32 pixels (a full warp). Measured using the CUDA
tracer.

has commenced, which greatly reduces communication overhead for GPU and
network tracers. Dividing the work is non-trivial however: not every compute
device may have the same rendering capacity, and not every line of pixels has the
same rendering cost (see figure 47).

In a game, a typical camera moves in a somewhat smooth fashion. A good
workload division for one frame will thus be at least reasonable for the next frame.
We exploit this by adjusting the workload balance in an iterative manner.

We implemented four schemes to divide work over the tracers:

don’t balance In this naive scheme, the work is evenly distributed over the
tracers; no balancing is performed. This scheme is included for reference.

robin hood In this scheme, the tracer that finished last passes one work unit to
the tracer that finished first. When the work is poorly distributed, it may take
some number of frames to properly balance.

perfect Calculates the exact amount of work a tracer can handle based on the
previous frame, but without considering differences in cost between lines of
pixels. This may result in hick-ups, when many expensive lines are assigned
to a tracer at once.

perfect smooth Same as “Perfect”, but this time, the workload per tracer is
smoothed over multiple frames.

Figure 48 shows the efficiency of the four schemes, for a spinning camera in the
Aztec scene. For a slow moving camera, the workload in two subsequent frames
is similar. All schemes except the overcompensating “Perfect” balancer work well.
The “Robin Hood” balancer exhibits poor efficiency for the first frames. For a faster
camera, “Robin Hood” is not able to keep up. For this situation, the aggressive
“Perfect” balancer outperforms even the “Perfect Smooth” balancer. When more
GPUs are used, “Perfect Smooth” is clearly the optimal scheme.

Table 16 shows the average efficiency of the four balancers over 128 frames, for
a slow and a faster moving camera. This table confirms that the “Perfect” and

128

Figure 48: Efficiency of three workload balancing schemes, for two GPUs (top row) and
three GPUs (bottom row), and small camera movements (left column) and larger
camera movements (right column). Values are percentage of rendering time
spent idling due to early completion.

“Perfect Smooth” schemes are similar in terms of average efficiency. The table does
however not show the spikes that are visible in the graphs.

7.3.4 Double-buffering Scene Data

For acceleration structure maintenance, we use the following assumptions:

1. A game world may consist of millions of polygons.

2. A small portion of these polygons is dynamic.

3. Several tracers will use the same acceleration structure.

Based on these assumptions, a full rebuild of the BVH for each frame is neither
required nor desired, as it would put a cap on maximum scene complexity, even
when very few changes occur. We reuse the system described in chapter 3, where
each scene graph node has its own BVH, and a top-level BVH is constructed per
frame over these BVHs. Each changed scene graph node is updated, using either
full reconstruction or refitting.

Brigade uses a double-buffered approach for BVH maintenance. During a single
frame, the CPU updates the BVH based on modifications of the scene graph. The
resulting changes to the BVH are sent to the tracers, where they are placed in a
commit buffer. At the start of the next frame, the commit buffer is processed, which

129

2 GPUs 3 GPUs
slow fast slow fast

none 46.4 30.2 45.1 47.2

robin hood 2.1 8.2 4.9 20.7

perfect 2.8 2.4 12.2 8.0

perfect smooth 1.4 3.4 2.8 6.2

Table 16: Average percentage of rendering time spent idling due to early completion, for
the four balancing schemes, over 128 frames, for a slow and a faster moving
camera.

results in an up-to-date BVH for each of the tracers. This process is illustrated in
figure 45.

Each frame is thus rendered using the BVH constructed during the previous
frame. Acceleration maintenance construction thus only becomes a bottleneck
when the time it requires exceeds the duration of a frame.

7.3.5 Converging

To improve the quality of the rendered image, several frames can be blended. Each
pixel of the final image is calculated as Cfinal = Cprev ∗ (1− f) +Cnew ∗ f, where
f ε(0, 1]. For stationary views, this effectively results in a higher number of samples
per pixel. For non-stationary views, this results in an incorrect image. The result
can be improved by linking f to camera movement. For a stationary camera, a
small value of f allows the renderer to blend many frames. For a moving camera, a
value of f close to 1 minimizes ghosting.

Note that even though the camera may be static, objects in the scene may not be.
It is therefore important to limit the minimum value of f to keep the ghosting for
dynamic objects within acceptable bounds.

7.3.6 CPU Single Ray Queries

Brigade exposes a CPU-based synchronous single ray query that uses the BVH from
the previous frame, to provide the game engine with a fast single-ray query. This
query is useful for a number of typical game situations, such as line-of-sight queries
for weapons and AI, collision queries for physics, and general object picking. The
single ray query uses the full detail scene (rather than e.g. a coarse collision mesh),
including animated objects.

130

7.3.7 Dynamically Scaling Workload

Maintaining a sufficient frame rate is of paramount importance to a game applica-
tion. In this subsection, we propose several approaches to scale the workload.

adjusting samples per pixel The relation between frames per second and sam-
ples per pixel is almost linear. Brigade adjusts the rendered number of
samples per pixel when the frame rate drops below a specified minimum,
and increases this value when the frame rate exceeds a specified maximum.

balancing primary rays and secondary rays By balancing the ratio of pri-
mary and secondary rays, the quality of anti-aliasing and depth of field
blurring can be traded for secondary effects. The primary rays are faster;
increasing their ratio will also improve frame rate.

scale russian roulette termination probability As discussed in section 6.3.2,
changing the termination probability of Russian Roulette does not introduce
bias, but only more variance. Altering the termination probability does how-
ever affect the number of deeper path segments, and thus frame rate. Unlike
the previous approach, scaling the termination probability using a factor
which is based on frame rate does not distinguish between primary and
secondary rays, and allows smooth scaling of performance.

Alternatively, the workload can be reduced by reducing rendering resolution, or
limiting trace depth. Limiting the maximum recursion depth of the path tracer
introduces bias, but also improves performance. In practice, due to Russian Roulette
deep rays are rare, which limits the effect of a recursion depth cap on performance.

For game development, the scalability of a renderer based on path tracing is an
attractive characteristic. A relatively slow system is able to run the path tracer at an
acceptable frame rate, albeit not at an acceptable level of variance. Faster systems
benefit from the additional performance by producing more samples per pixel, and
thus a smoother image.

7.3.8 Discussion

The rendering system described in this section is relatively simple. To a large extend,
this simplicity is the result of the chosen rendering algorithm. The path tracer
does not rely on any precalculated data, which greatly reduces data dependencies.
There are two exceptions, and these are also the most complex parts of the system.
The first is the acceleration structure, which is cached and updated iteratively, in
a double-buffered fashion. As a result, games cannot make arbitrary changes to
the scene graph. The second is the data synchronization between the renderer core
and the tracers, which generally run on the GPU(s). Using a commit buffer system,
Brigade makes this virtually invisible to the application, and very few restrictions
apply.

131

Figure 49: Two views from the “Reflect” game, rendered at 448x576 pixels using 16spp,
scaled up to 896x576.

Apart from the tracers, Brigade is a platform-independent system. The tracers
abstract away vendor-specific APIs for GPGPU, and allow the implementation of
networked tracers and CPU-based tracers. When using a CPU tracer, the system is
able to achieve full system utilization, with very little overhead.

7.4 applied

To validate our results, we have applied the renderer to two student game projects.
Both games have been produced in approximately 14 working days.

7.4.1 Demo Project “Reflect”

The Reflect game application is a student game that was developed using an early
version of the Brigade engine. The game scenery is designed to simulate actual
requirements for game development, and purposely mimics the graphical style of
a well-known modern game (Portal 2 [169]).

• scenery consists of approx. 250k triangles, divided over multiple, separated
rooms;

• the scene is illuminated by thousands of area light sources, many of which
are dynamic;

• the game world is populated by dozens of dynamic objects.

132

Art assets for the game were created in Alias Wavefront Maya 2011, and directly
imported into the game.

Like Portal 2, Reflect is a puzzle game, where the player advances by activating
triggers that in turn open doors or activate elevators. A “mirror gun” is available
to the player to transform flat and curved wall sections into mirrors. These mirrors,
as well as glass cube objects, can be used to divert lasers that block the way.

Configuration

Reflect was developed for a dual-CPU / dual-GPU machine (2 hexacore Intel Xeon
processors, 2 NVidia GTX470 GPUs). We implemented a CPU tracer as well as a
CUDA GPU tracer. For performance reasons, we limited the path tracers to a single
diffuse bounce.

Game-specific Optimizations

The scenery of the game consists of many rooms, separated by doors. A common
optimization in rasterization-based renderers is to disable geometry that cannot be
visible. For a path tracer this does not significantly improve performance. We did
find however that turning off lights in those rooms reduces variance, as the path
tracer will no longer sample those light sources.

Performance and Variance

Figure 49 shows two scenes from the game running on a dual-CPU / dual GPU
machine. At 16 spp, the game runs at 10-12fps. At this sample count, brightly lit
scenes are close to acceptable. Darker regions, such as the area under the platform
in the right image, show significant temporal noise. Careful level layout helps to
reduce objectionable noise levels. To the visual artist, this is counter-intuitive: where
rasterization-based renderers tend to use small amounts of point light sources, a
path tracer benefits from large area lights, and incurs no slowdown when those
lights are animated.

Observations

“Reflect” struggles to achieve an acceptable frame rate, at a low resolution, on
a high-end system. The project does however show the potential of using path
tracing for games. The art for this game was produced in Maya 2011, and directly
imported into the game, leading to very short development cycles, and usable art
on the second day of the project. Within the same time span, the programmers
implemented a basic physics engine using ray queries that allowed them to navigate
the rooms.

The freedom in lighting setup led to a final level that contains approximately
10k light emitting polygons. Direct and indirect illumination ’simply works’, and
results in subtle global illumination, both for static and dynamic objects.

133

Figure 50: Four views from “It’s About Time”.

The focus on using level design to reduce variance, rather than to optimizing
frame rate, proved to be challenging.

The CPU tracer that was implemented for this project proved to be problematic:
keeping the CPU and GPU tracers in sync required significant engineering effort,
while the overall contribution of the CPU is quite small.

7.4.2 Demo Project “It’s About Time”

The student game “It’s About Time” was created using a recent version of the
Brigade renderer. Four views from the game are shown in figure 50.

“It’s about time” is a third-person puzzle game that takes place in deserted Aztec
ruins. The player must collect a number of artifacts by solving a number of puzzles,
located in several areas in an open outdoor world.

Configuration

“It’s About Time” is designed for a standard high-end system, using a single
hexacore CPU and one or more current-generation NVidia or AMD GPUs. The
game renders to standard HD resolution. This resolution can be halved to improve
performance. We developed an updated CUDA tracer that roughly doubles the
performance of the first iteration (as used in “Reflect”), as well as an OpenCL
tracer, which produces identical images. A CPU tracer was not used; the CPU is
reserved for acceleration structure maintenance and game logic. The implemented
path tracers are unbiased.

134

Project-specific Features

One of the puzzles features an animated water surface that responds to the player,
consisting of tens of thousands of polygons. For the player character, a detailed set
of skinned animations is used. The puzzles make extensive use of rigid animation.
As a result, acceleration structure maintenance requires considerable processing.
A detailed day-night cycle and an animated cloud system (with shadowing) were
implemented to emphasize the strength of the path tracer for dynamic lighting. A
standard physics engine was integrated to provide high quality physics simulation.
The level is detailed, and consists of 1.4M triangles. The artists used a small set of
sand stones to construct most of the buildings and ruins.

Game-specific Optimizations

The game world is illuminated by a sun (or the moon), and some smaller light
sources. To reduce variance, we modified the path tracer to always sample two light
sources per diffuse surface interaction. One of these rays always probes the primary
light source. This significantly reduces variance in most areas. Adaptive converging
is used to improve image quality when the camera is (almost) stationary.

System utilization

Figure 51 shows system utilization for the four views of figure 50, rendered at
4spp.

For the first two views, the CPU is underutilized, as both acceleration structure
maintenance and game logic require little processing time. For the other two views,
the camera is near a simulated water surface that consists of 18k polygons. Both
the simulation itself and the resulting acceleration structure maintenance require
considerable processing time. This also affects the GPU tracers, which use more
time to transfer and process the modified scene data.

Performance and Variance

Figure 52 shows a single scene from the game, rendered using varying sample
counts. As in “Reflect”, areas that are directly illuminated converge quickly, while
shadowed areas exhibit more noise. For the outdoor scenery of “It’s About Time”,
an acceptable quality for most camera views is obtained with 8 or 16spp. On a
system with two NVidia GTX470 GPUs, we achieve 2 to 4 spp at real-time frame
rates, at a quarter of 720p HD resolution (640x360). This lets us quantify the
remaining performance gap: real-time frame rates at 720p require 8 to 16 times the
achieved performance.

135

Figure 51: System utilization for the four views shown in figure 50.

Figure 52: Noise level and performance at 2spp, 4spp, 8spp and 16spp. Rendering reso-
lution is 640x360. Measured on a system with a 6-core CPU and two NVidia
GTX470 GPUs.

136

7.5 discussion

The Brigade renderer implements the path tracing algorithm on a heterogeneous
architecture of CPUs and GPUs. In this system, the CPU is responsible for accel-
eration structure maintenance. A set of tracers implements the core path tracing
algorithm on all compute devices (e.g. CPU, GPU, and remote systems over a
network connection). Assuming availability of a CPU tracer, the system achieves
full system utilization. We proposed to use double buffering of scene data to enable
parallel execution of acceleration structure maintenance and path tracing. We ap-
plied path tracing to two games, and achieve real-time performance for non-trivial
scenes, albeit at low resolutions and high variance.

The development of a game using path tracing for rendering simplifies game
development. This affects both software engineering and art asset development.
Since Brigade does not distinguish static and dynamic light sources, and does not
impose any limitations on the number or size of light sources, lighting design
requires little knowledge beyond discipline-specific skills. The fact that polygon
counts and material properties have only a small impact on rendering performance
provides level designers and graphical artists with a high level of freedom in the
design of the game. This reduces the number of iterations level art goes through,
and allows a team to have game assets in the engine early on in the project.

Despite these positive experiences, real-time path tracing in commercial games
is not feasible yet on current generation high-end hardware. Acceptable variance
at HD resolution and real-time frame rates requires 8x to 16x the performance that
can be achieved on our test system. Without further algorithmic improvements, this
level may be reached in a few years. We do believe this can be accelerated. Already
GPU ray tracing performance is benefiting from architectural improvements, on
top of steady performance improvements. Another way to partially solve the
rendering performance problem is to use cloud rendering, where dedicated servers
are used for rendering images, which are then transferred over the internet to
the client. At the time of writing, the Brigade system is being integrated into the
OTOY cloud service, specifically for this purpose, and will be able to use 8 or
more GPUs in parallel, which should allow us to reach real-time performance. The
cloud rendering service will be made available to indie game developers in the
near future, and will allow them to use path tracing without the need of owning
sufficiently powerful hardware.

Apart from raw performance, we should address the issue of variance. While low
sample rates already result in reasonably converged images in our experiments,
this will not be sufficient for more complex materials. Techniques like bidirectional
path tracing (BDPT) and energy redistribution path tracing (ERPT) may solve this
to some extent. However, not all of these techniques produce acceptable images at
low sample rates; therefore, a minimum performance level is required before this
can be considered for real-time graphics.

A temporary solution to the rendering performance problem is to use post
processing on the path traced image. Although some work has been conducted in

137

this area, it typically does not consider all the data that is available in a path tracer,
which leaves room for improvement.

138

8
C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, we set out to investigate ray tracing and path tracing as alternatives
to rasterization-based rendering for real-time games. The desire to replace the
rasterization algorithm stems from fundamental limitations of this algorithm when
dealing with global effects. These limitations led to the addition of approximating
algorithms, and, consequently, the development of highly complex renderers, which
often place restrictions on various aspects of rendering, such as the use of lights
and dynamic geometry. This complicates the game development process as a whole.
The construction of renderers as a complex ecosystem of sub-algorithms also affects
realism in modern games. Generally speaking, the level of realism achieved by
today’s games is bound by the availability of approximating algorithms and the
size of the development budget, rather than compute power.

For the ray tracing algorithm, the opposite is true. Algorithms for physically
based light transport have been available for nearly three decades, but the required
compute power did make these algorithms unsuitable for real-time games, where
frame times are typically limited to tens of milliseconds. Over the past decade, this
has changed: real-time ray tracing became feasible on consumer hardware. The
promise of realistic images produced by an elegant renderer, and the engineering
challenge this represents, triggered our initial research.

In the first part of this thesis, we focused on Whitted-style ray tracing, and
validation and combination of existing work.

We implemented a carefully optimized renderer for games. This served a number
of purposes. First of all, existing work often focused only on parts of a practical
renderer. The lack of a realistic context may reduce the validity of findings. Fur-
thermore, existing work showed varying levels of absolute performance for similar
functionality, which suggests that performance figures may be related to engineer-
ing quality as much as algorithmic quality. And finally, the validation of work in
an actual game development environment let us observe the impact of ray tracing
on graphical style, and the efficiency of the development process.

To add diffuse interreflection to the Whitted-style ray tracer, we replaced the
constant ambient color by an approximation of diffuse indirect light, using a cache,
and a secondary rendering algorithm. However, by doing so, we reintroduced the
drawbacks of stacked rendering algorithms.

In the second part of this thesis, we studied physically based rendering using
path tracing. Path tracing improves on Whitted-style ray tracing, by enabling the
full set of light transport paths described by the rendering equation, which results
in highly realistic images. Unlike most rasterization-based rendering systems,

139

the path tracing algorithm requires no scene preprocessing (apart from building
the acceleration structure). The algorithm does not require manual tuning of
parameters. This is not the case for Whitted-style ray tracing, which generally
requires a global ambient light color, and rasterization based algorithms, which
typically require the user to specify many variables, e.g., shadow map resolution
and detail settings.

From a production point of view, the use of path tracing in games is highly
desirable. At the same time, the performance requirements of the path tracing
algorithm are daunting. For that reason, we aimed for a proof-of-concept renderer
and an estimate of the performance level required for a practical application.

Path tracing is able to outperform rasterization-based rendering in terms of
perceived realism, without sacrificing the elegance of the underlying algorithm.
The compute power required for this will be available in a typical consumer system
in the near future. Using cloud rendering, this power is available today. Relying
on compute power alone for further advances in image fidelity is an important
change, which will significantly affect the future of graphics in games.

Our work focuses on practical implementation and application of rendering
algorithms. The harsh performance requirements of the algorithms demand optimal
use of system resources, and an emphasis on code optimization. We believe our
implementations are of high quality, which makes them suitable for comparisons
in future work.

summary

Whitted-Style Ray Tracing Ray tracing in a real-time context requires careful
engineering. The development of acceleration structures and acceleration structure
traversal using single rays and later bundles of rays can be seen as optimization
efforts, each targeting a bottleneck in rendering performance. When time to image
includes acceleration structure maintenance, as is the case for games, we need to
balance time spent on this maintenance, and time spent tracing rays. This suggests
that no single ’ultimate renderer’ can be constructed; as has always been the case,
renderers for games (and probably for a broader context) are tailor-made, if we
desire optimal performance of the application.

The Arauna real-time ray tracer was implemented as a proof-of-concept renderer,
and serves as a state-of-the-art ray tracer which combines existing algorithms and
data structures in a highly optimized manner. It implements the Whitted-style
ray tracing algorithm, with one modification: to facilitate the large number of
lights used in most games, Arauna uses an approximation of quadratic fall-off that
limits the radius of influence of lights, so that a light BVH can be used to reduce
the cost of scenes with many lights. Arauna was used by other researchers as a
reference renderer, as well as for a number of student games, including a fast-paced
pinball game and a multiplayer deathmatch game. For almost all developed titles,
custom features were added to the renderer, such as a multi-beam spotlight, normal

140

mapping and volumetric fog. This reiterates the assumption that a renderer is
tailor-made for a game, even when using ray tracing.

The development of several games using the Arauna engine showed that produc-
tion benefits from ray tracing. Several teams implemented basic physics using ray
queries, and visual artists were pleased with the forgiving art pipeline, resulting in
early playable builds of all games.

Sparse Sampling of Global Illumination The development of the Arauna ray
tracer, and its use in games, also made clear that ray tracing is efficient mainly
for primary rays and shadow rays. Although the algorithm remains elegant when
reflections and refractions are added, performance quickly degrades. In practice,
this discourages the use of these features in games, and leads to somewhat bland
graphics that do not improve on the visual quality achieved by rasterization-based
renderers. Particularly the absence of indirect light, which is approximated quite
convincingly by some modern renderers, is disappointing.

While extensions of Whitted-style ray tracing such as path tracing would solve
this, the computational burden of these algorithms is prohibitive even for modern
CPUs. As an intermediate solution, we proposed to calculate global illumination on
the CPU within the time available for one frame by sampling global illumination
sparsely. To do this, we create a set of random points distributed over the surfaces
of the scene, with a density that adapts to ambient occlusion, which we use as an
estimate of the frequency of the global illumination. For this set of points we then
calculate accurate illumination. By sparsely sampling global illumination, we can
scale the cost to match the available computational power. As the density of the
point set increases, the result converges to the correct solution. For the illumination
itself, we thus keep the generality and elegance of ray tracing. The approach does
however complicate illumination in dynamic environments.

Path Tracing The final goal of rendering game scenes using path tracing comes
within reach if we combine the computational power of the CPU and the GPU.
With the relative inefficiency of secondary effects in Arauna in mind, we further
investigated performance of divergent ray queries on the CPU. We adapted an
existing scheme aimed at out-of-core rendering to improve data locality for in-
core ray tracing. We improved on state-of-the-art performance, using breadth-first
traversal of a shallow octree with MBVHs in the leaf nodes. Despite the promising
results, the efficiency of the CPU for path tracing remains low.

Measuring path tracing performance is not straight-forward. Frame rate has little
meaning, and neither has raw ray throughput. We therefore compare efficiency
of algorithms by measuring variance over time. We use this to evaluate several
GPU path tracing algorithms that aim to improve SIMT utilization. Using the same
measure, we evaluate algorithms that aim to reduce variance, at the cost of extra
computations.

Equipped with optimized implementations of techniques for fast path tracing for
a variety of scenes on both the CPU and the GPU, we built the Brigade path tracing
system. Like Arauna, the Brigade system was developed specifically for games,
which is a new application of physically based rendering. This specific context

141

involves a number of harsh requirements, of which a small time budget is the
most challenging. Brigade implements an architecture that divides the rendering
workload over abstract ’tracers’, which implement the path tracing algorithm for
specific compute units. The Brigade system has been used for two more games and
is used commercially by OTOY Inc. for cloud rendering.

We have shown that physically-based rendering algorithms based on ray tracing
can be applied to games using consumer hardware. These algorithms do not rely on
precomputed data or configurable parameters (apart from a global quality setting).
This has strong advantages for game production. Several long-standing issues in
rendering are solved in an elegant and straight-forward way. Rendering becomes
compute bound, rather than dependent on ’hack after hack’ for the support of
individual phenomena. The computational power required to render games using
path tracing is not available yet, but not far off either: path tracing will be a viable
alternative to rasterization based rendering within a few years. Once this point is
reached, legacy is perhaps the only remaining hurdle.

Future Work

In this section, we conclude with an overview of possible directions for future
work.

In a practical game application, considerable amount of processing is required
to maintain the acceleration structure. Based on the assumption that large portions
of typical game scenery are static, we chose an approach of incremental updates,
carried out by the CPU, in parallel with rendering on the GPU. For the games
presented in chapter 7, this did not exceed CPU capacity, and we did not seek
out the boundaries of acceleration structure maintenance performance. For certain
games, requirements in terms of number of dynamic object may be much higher. We
would like to investigate ways to increase performance under these circumstances.
Recent work shows that the GPU significantly outperforms the CPU for full
updates of the acceleration structure [276, 182]. We would like to investigate
incremental updates of the acceleration structure on the GPU to combine this
higher performance level with the scalability of our approach.

Several authors point out that shading cost is a concern in a renderer. In our
system, rendering time is dominated by ray traversal. This is partially due to the
relatively simple shaders in our system: a programmable shader system such as
the one as proposed by Karrenberg et al. [129] would increase the versatility of
our system, but also the impact of shading on overall rendering time: rays that
are processed in parallel may not just traverse different scene regions, but also
encounter different materials, in which case efficiency is reduced due to sequential
processing of shader code. This is similar to the data locality problem that was
discussed in chapter 5. We believe that a GPU implementation of the algorithm
described in chapter 5 may improve execution coherence for shader code: by
batching rays that traverse the same scene regions, the chance that these rays will
encounter the same materials and thus execute the same shading code increases.

142

To further increase the performance of our system, we would like to reduce the
variance of our path tracing samplers, using bidirectional path tracing, and careful
sample placement. Considering the context of rendering for games, we would
also like to investigate the possibility of a real-time hybrid system, similar to the
system presented by Dammertz et al. [62]. This system uses a combination of path
tracing and biased algorithms, where each method handles light transport paths
for which it is efficient. Although such a system would be more elaborate than a
single-method renderer, it would not sacrifice generality.

In section 7.3.7 we discussed mechanisms that aim to maintain real-time frame
rate by dynamically adjusting the workload. Although a path tracer generally does
not benefit from level of detail algorithms, we do want to investigate the possibility
of adjusting shader cost based on distance and recursion depth. This could be done
by reducing material specularity and ignoring normal maps after one non-specular
bounce.

We believe our system would further benefit from postprocessing. Although
this would also introduce bias, noise reduction algorithms would improve the
perceived quality of the produced images. Although recently quite some research
has been done in this area (e.g. [61, 210, 87]), we believe a further investigation of
real-time filtering techniques that make use of all relevant data in a path tracer
would be worthwhile.

In this work, we have applied renderers based on ray tracing to a variety of
game projects of increasing complexity. The next step is to apply these renderers to
commercial games.

143

Part III

A P P E N D I X

A
A P P E N D I X

a.1 shading reconstruction implementation

This appendix contains source code for reconstruction of shading from the point
set described in chapter 4.

// float ix, iy, iz contain surface point location

// float NX, NY, NZ contain surface point normal

int gx = (ix - scenebounds.x1) / scenebounds.xext;

int gy = (iy - scenebounds.y1) / scenebounds.yext;

int gz = (iz - scenebounds.z1) / scenebounds.zext;

int igx = gx * GRIDXSIZE;

int igy = gy * GRIDYSIZE;

int igz = gz * GRIDZSIZE;

Cell* c = &grid[igx +

igy * GRIDXSIZE + igz * GRIDXSIZE * GRIDYSIZE];

const int count = c->GetSampleCount();
__m128 gi4 = zero;

float totalscale = 0.0001f;

float sdreci = 1.0f / (1 - MINDOT);

SamplingPoint** plist = (const SamplingPoint**)c->GetSamples();

for (int j = 0; j < count; j++)

{

float dx = plist[j]->pos.x - ix;

float dy = plist[j]->pos.y - iy;

float dz = plist[j]->pos.z - iz;

float dist = dx * dx + dy * dy + dz * dz;

if (dist < (plist[j]->radius * plist[j]->radius))

{
__m128 pgi = plist[j]->value;

float dot = NX * plist[j]->N.x +

NY * plist[j]->N.y + NZ * plist[j]->N.z;

if (dot > MINDOT)

{

float d1 = ix * NX + iy * NY + iz * NZ;

float d2 = plist[j]->pos.x * NX +

plist[j]->pos.y * NY +

plist[j]->pos.z * NZ;

float dotscale = (dot - MINDOT) * sdreci;

float diff = fabs(d1 - d2);

if (diff > MAXSURFACEDIST) continue;
__m128 dist4 = _mm_set_ps1(dist);
__m128 scale4 = _mm_sub_ps(_mm_set_ps1(plist[j]->radius),

_mm_mul_ps(dist4, _mm_rsqrt_ps(dist4)));
__m128 scale4a = _mm_mul_ps(_mm_mul_ps(scale4, scale4),

_mm_set_ps1(dot - m_SampleDot));

147

totalscale += *reinterpret_cast<const float*>(&scale4a);

gi4 = _mm_add_ps(gi4, _mm_mul_ps(scale4a, pgi));

}

}

}

const __m128 invscale4 = _mm_mul_ps(_mm_set_ps1(0.003f),
_mm_rcp_ps(_mm_set_ps1(totalscale)));

float* gi = (float*)&gi4;

addc4[p1 * 4 + 0] = _mm_add_ps(addc4[p1 * 4 + 0],
_mm_mul_ps(_mm_mul_ps(

m_ID->colip[p1 * 4 + 0].rgba, invscale4),
_mm_set_ps1(gi[2]))); // rrrr

addc4[p1 * 4 + 1] = _mm_add_ps(addc4[p1 * 4 + 1],
_mm_mul_ps(_mm_mul_ps(

m_ID->colip[p1 * 4 + 1].rgba, invscale4),
_mm_set_ps1(gi[1]))); // gggg

addc4[p1 * 4 + 2] = _mm_add_ps(addc4[p1 * 4 + 2],
_mm_mul_ps(_mm_mul_ps(

m_ID->colip[p1 * 4 + 2].rgba, invscale4),

_mm_set_ps1(gi[0]))); // bbbb

148

B
A P P E N D I X

b.1 reference path tracer

This CUDA code implements a basic path tracer, as described in chapter 6. GPU
hardware occupation will be low when using this kernel, due to the break state-
ments, which are encountered when a path leaves the scene, or encounters a light
source. In these cases, the thread becomes inactive, and is only replaced by an
active thread when all threads in the warp have completed.

extern "C" __global__ void TracePixelReference()

{

// setup path

int numRays = context.width * context.height;

int idx0 = threadIdx.y + blockDim.y *
(blockIdx.x + gridDim.x * blockIdx.y) +

((context.firstline * context.width) >> 5);

int tx = threadIdx.x & 7, ty = threadIdx.x >> 3;

int tilesperline = context.width >> 3;

int xt = idx0 % tilesperline, yt = idx0 / tilesperline;

int px = (xt << 3) + tx, py = (yt << 2) + ty;

int pidx = numRays - 1 - (px + py * context.width);

RNG genrand(pidx, (clock() * pidx * 8191) ^ 140167);

int spp = context.SampleCount;

float rcpw = 1.0f / context.width;

float u = (float)px * rcpw - 0.5f;

float v = (float)(py + (context.width - context.height) *
0.5f) * rcpw - 0.5f;

float3 E = make_float3(0, 0, 0);

// trace path

for(int sample = 0; sample < spp; sample++)

{

// construct primary ray

float3 O, D;

CreatePrimaryRay(O, D);

// trace path

float3 throughput = make_float3(1, 1, 1);

int depth = 0;

while (1)

{

int prim = 0;

float2 BC, UV = make_float2(0, 0);

float dist = 1000000;

bool backfaced = false;

intersect<false,true>(O,D,dist,BC,prim,backfaced);

O += D * dist;

149

if (prim == -1)

{

E += throughput * GetSkySample(D);

break;

}

Triangle& tri = context.Triangles[prim];

TracerMaterial mat = context.Materials[tri.GetMaterialIdx()];

if (mat.flags & TracerMaterial::EMITTER) // light

{

E += throughput * mat.EmissiveColor;

break;

}

else // diffuse reflection

{

float3 matcol = tri.GetMaterialColor(mat, BC, UV);

float3 N = tri.GetNormal(mat, BC, UV) * (backfaced ? -1 : 1);

D = normalize(RandomReflection(genrand, N));

throughput *= matcol * dot(D, N);

}

O += D * EPSILON; // prevent intersection at dist = 0

depth++;

if (depth > 3)

{

if (genrand() > 0.5f) break;

throughput *= 2.0f;

}

}

}

context.RenderTarget[pidx]=make_float4(E / (float)spp, 1);

}

b.2 path restart

This CUDA code implements Novak’s path restart algorithm, where terminated
paths are replaced by new paths to prevent GPU under-utilization. This imple-
mentation also includes Russian Roulette, explicit light sampling and multiple
importance sampling to reduce the variance of the estimate.

#define TERMINATE { restart = true; continue; }

extern "C" __global__ void TracePixelSegment()

{

// setup path

int numRays = context.width * context.height;

int idx0 = threadIdx.y + blockDim.y *
(blockIdx.x + gridDim.x * blockIdx.y) +

((context.firstline * context.width) >> 5);

int tx = threadIdx.x & 7, ty = threadIdx.x >> 3;

int tilesperline = context.width >> 3;

int xt = idx0 % tilesperline, yt = idx0 / tilesperline;

int px = (xt << 3) + tx, py = (yt << 2) + ty;

int pidx = numRays - 1 - (px + py * context.width);

150

RNG genrand(pidx, (clock() * pidx * 8191) ^ 140167);

int spp = context.SampleCount;

float rcpw = 1.0f / context.width;

float u = (float)px * rcpw - 0.5f;

float v = (float)(py + (context.width - context.height)

* 0.5f) * rcpw - 0.5f;

float3 E = make_float3(0, 0, 0), throughput, O, D;

bool restart = true, firsthit = true;

int paths = 0, curdepth = 0;

// trace path

for(int segment = 0; ((segment < spp * 2) || (!restart)); segment++)

{

if (restart)

{

// construct primary ray

CreatePrimaryRay(O, D);

firsthit = true, restart = false;

throughput = make_float3(1, 1, 1);

curdepth = 0, paths++;

}

// trace path segment

int prim = 0; float2 UV, BC;

float dist = 1000000;

bool backfaced = false;

O += D * EPSILON; // prevent intersection at dist = 0

intersect<false,true>(O, D, dist, BC, prim, backfaced);

O += D * dist;

if (prim == -1)

{

// path left scene

E += throughput * GetSkySample(D);

TERMINATE;

}

Triangle& tri = context.Triangles[prim];

TracerMaterial mat = context.Materials[tri.GetMaterialIdx()];

if (mat.flags & TracerMaterial::EMITTER)

{

// path arrived at light

if (firsthit & (!backfaced))

E += throughput * mat.EmissiveColor;

TERMINATE;

}

float3 matcol = tri.GetMaterialColor(mat, BC, UV);

float3 N = tri.GetNormal(mat, BC, UV) * (backfaced ? -1 : 1);

float3 wo = D * -1.0f;

// sample direct lighting using next event estimation

float3 L, LN, LColor;

float area;

RandomPointOnLight(L, LN, LColor, genrand, area);

L -= O;

float sqdist = dot(L, L), ldist = sqrtf(sqdist);

L *= 1.0f / ldist;

float NdotL = dot(N, L), LNdotL = -dot(LN, L);

151

if ((NdotL > 0) && (LNdotL > 0))

{

bool backface; int sprim; float2 SBC; ldist *= 0.99f;

intersect<true,false>(O + L * EPSILON, L,

ldist, SBC, sprim, backface);

if (sprim == -1)

{

float lightPdf = (LNdotL > EPSILON) ? (sqdist /

(LNdotL * area * context.lightcount)) : 0.0f;

if (lightPdf > 0) E += throughput * matcol *
INVPI * 0.5f * LColor * NdotL / lightPdf;

}

}

// russian roulette

if (curdepth > 1)

{

float p = max(EPSILON, min(0.5f, (throughput.x +

throughput.y + throughput.z) * 0.333f));

if (genrand() > p) TERMINATE;

throughput /= p;

}

// do a lambert reflection

D = DiffuseReflection(genrand, N);

float bsdfPdf = LambertPdf(D, N);

float3 f = matcol * INVPI * 0.5f;

if (bsdfPdf < EPSILON) TERMINATE;

throughput *= f * dot(D, N) / bsdfPdf;

firsthit = false;

curdepth++;

}

context.RenderTarget[pidx]=make_float4(E * (1.0f / (float)paths), 1.0f);

}

b.3 combined

This CUDA kernel combines deterministic path termination and path regeneration.

#define TERMINATE { restart = true; continue; }

extern "C" __global__ void TracePixelCombined()

{

// setup path

int idx0 = threadIdx.y+blockDim.y*
(blockIdx.x+gridDim.x*blockIdx.y)+

((context.firstline*context.width) >> 5);

int tx = threadIdx.x & 7,ty = threadIdx.x >> 3;

int tilesperline = context.width >> 3;

int xt = idx0 % tilesperline,yt = idx0/tilesperline;

int px = (xt << 3)+tx,py = (yt << 2)+ty;

int pidx =(px+py*context.width);

px = context.width-px;

py = context.height-py;

152

RNG genrand(pidx,(clock()*pidx*8191) ^ 140167);

int spp = context.SampleCount;

float rcpw = 1.0f/context.width;

float u = (float)px*rcpw-0.5f;

float v = (float)(py+(context.width-context.height)*
0.5f)*rcpw-0.5f;

float3 E = make_float3(0,0,0),throughput,O,D;

bool firsthit = true;

int rays = 0;

float3 prevabs;

int paths = 0,curdepth = 0;

// path loop

for (int p = 0; p < spp; p++)

{

int maxdepth = (__clz((spp-1)-p)-__clz(spp))+1;

bool restart = true;

// trace path segment

for (int depth = 0; depth < maxdepth; depth++)

{

if (restart)

{

// construct primary ray

CreatePrimary(O,D);

prevabs = make_float3(0,0,0);

firsthit = true,restart = false;

throughput = make_float3(1,1,1);

curdepth = 0,paths++;

}

int prim = 0;

float2 UV,BC;

float dist = 1000000;

bool backfaced = false;

O += D*EPSILON; // prevent intersection at dist = 0

intersect<false,true>(O,D,dist,BC,prim,backfaced);

rays++;

O += D*dist;

if (prim == -1)

{

// path left scene

E += throughput*GetSkySample(D);

TERMINATE;

}

// absorbance

if (prevabs.x || prevabs.y || prevabs.z)

{

throughput *= make_float3(
__expf(prevabs.x*-dist),
__expf(prevabs.y*-dist),
__expf(prevabs.z*-dist));

prevabs = make_float3(0,0,0);

}

Triangle& tri = context.Triangles[prim];

const TracerMaterial mat =

153

context.Materials[tri.GetMaterialIdx()];

if (mat.flags & TracerMaterial::EMITTER)

{

if (firsthit & (!backfaced)) E += throughput*mat.EmissiveColor;

TERMINATE;

}

float3 matcol = tri.GetMaterialColor(mat,BC,UV);

float3 N = tri.GetNormal(mat,BC,UV)*
(backfaced ? -1 : 1);

// handle diffuse materials

float3 wo = D*-1.0f;

float3 L,LN,LColor;

float area;

RandomPointOnLight(L,LN,LColor,genrand,area);

L -= O;

float sqdist = dot(L,L),ldist = sqrtf(sqdist);

L *= 1.0f/ldist;

float NdotL = dot(N,L),LNdotL = -dot(LN,L);

if ((NdotL>0) && (LNdotL>0) && context.lightcount>0)

{

bool backface;

int sprim;

float2 SBC;

ldist *= 0.99f;

intersect<true,false>(O+L*EPSILON,L,ldist,SBC,

sprim,backface);

rays++;

if (sprim == -1)

{

float lightPdf = (LNdotL > EPSILON) ?

(sqdist/(LNdotL*area*context.lightcount)) : 0.0f;

if (lightPdf > 0)

{

float3 f = matcol*INVPI*0.5f;

E += throughput*f*LColor*NdotL/lightPdf;

}

}

}

// bsdf sampling

float3 f;

float bsdfPdf;

D = DiffuseReflection(genrand,N);

bsdfPdf = LambertPdf(D,N);

f = matcol/PI*0.5f;

if (bsdfPdf <= 0) TERMINATE;

// russian roulette

if (curdepth > 1)

{

float p = max(EPSILON,min(0.5f,

(throughput.x+throughput.y+throughput.z)*0.333f));

if (genrand() > p) TERMINATE;

throughput /= p;

}

154

throughput *= f*dot(D,N)/bsdfPdf;

firsthit = false;

}

}

context.RenderTarget[pidx]=make_float4(E*(1.0f/(float)paths),*(float*)&rays);

}

155

C
A P P E N D I X

c.1 mbvh/rs traversal

This appendix contains the source code for the kernel of the streaming path tracer
presented in chapter 5.

void MBVHTracer::Traverse(MBVHRaylist* packet)

{

struct ERay { float4 rdx4,rdy4,rdz4,ox4,oy4,oz4; };

ERay ray[400];

Ray* rays=packet->ray;

int numrays=packet->GetRayCount();

uint16 rayStack[4][ACTIVE_RAY_STACK_SIZE];

union { uint rayHead[4]; float4i rayHead4; };

rayHead[0]=numrays;

rayHead[1]=rayHead[2]=rayHead[3]=0;

MBVHTask taskStack[1024];

int tasks=1;

MBVH::Node* root=mbvh->GetRoot();

taskStack[0].node=root;

taskStack[0].data=numrays<<8;

for(int i=0; i<numrays; ++i)

{

rayStack[0][i]=i;

ray[i].rdx4=set4(packet->ray[i].rDx);

ray[i].rdy4=set4(packet->ray[i].rDy);

ray[i].rdz4=set4(packet->ray[i].rDz);

ray[i].ox4=set4(packet->ray[i].O.x);

ray[i].oy4=set4(packet->ray[i].O.y);

ray[i].oz4=set4(packet->ray[i].O.z);

}

float4 mintmin=set4(0.00001f);

float4i one=set4i(1);

float4i izero=zero4i();

union { float4 idxmask4; uint idxmask[4]; };

union { float4 idxadd4; uint idxadd[4]; };

idxmask[0]=idxmask[1]=idxmask[2]=idxmask[3]=0xfffffffc;

idxadd[0]=0,idxadd[1]=1,idxadd[2]=2,idxadd[3]=3;

while (tasks)

{

MBVH::Node* node=taskStack[--tasks].node;

int SIMDlane=taskStack[tasks].data&255;

int numRays=taskStack[tasks].data>>8;

if (node->child != 0)

{

rayHead[SIMDlane] -= numRays;

uint16* list=&rayStack[SIMDlane][rayHead[SIMDlane]];

157

union{ float4i numActive4; int numActive[4]; };

numActive4=izero;

float4 tdist4=zero4();

for(int i=0 ; i<numRays ; i++)

{

int rayid=list[i];

ERay* r=&ray[rayid];

float4 tx0=mul4(sub4(node->bmin[0].v4,

r->ox4),r->rdx4);

float4 tx1=mul4(sub4(node->bmax[0].v4,

r->ox4),r->rdx4);

float4 txn=min4(tx0,tx1);

float4 txf=max4(tx0,tx1);

float4 tmin1=max4(mintmin,txn);

float4 tmax1=min4(set4(packet->ray[rayid].dist),

txf);

float4 ty0=mul4(sub4(node->bmin[1].v4,r->oy4),

r->rdy4);

float4 ty1=mul4(sub4(node->bmax[1].v4,r->oy4),

r->rdy4);

float4 tyn=min4(ty0,ty1);

float4 tyf=max4(ty0,ty1);

float4 tmin2=max4(tmin1,tyn);

float4 tmax2=min4(tmax1,tyf);

float4 tz0=mul4(sub4(node->bmin[2].v4,r->oz4),

r->rdz4);

float4 tz1=mul4(sub4(node->bmax[2].v4,r->oz4),

r->rdz4);

float4 tzn=min4(tz0,tz1);

float4 tzf=max4(tz0,tz1);

float4 tmin3=max4(tmin2,tzn);

float4 tmax3=min4(tmax2,tzf);

float4 result4=cmple4(tmin3,tmax3);

tdist4=add4(tdist4,and4(tmin3,result4));

float4i add4=and4i(*((float4i*)&result4),one);

numActive4=add4i(numActive4,add4);

for (int j=0; j<4; j++)

rayStack[j][rayHead[j]]=rayid;

rayHead4=add4i(rayHead4,add4);

}

// sort intersected nodes

union { float4i amask; float4 cmask; };

amask=cmpgt4i(numActive4,izero);

int mask=movemask4(cmask);

int count=(mask&1)+((mask>>1)&1) +

((mask>>2)&1)+((mask>>3)&1);

if (count==1)

{

for (int j=0; j<4; j++,mask>>=1) if (mask&1)

{

taskStack[tasks].node=&node->child[j];

taskStack[tasks++].data=(numActive[j]<<8)+j;

}

158

}

else

{

// sort

float4 v0,v1,v2,v3,t;

v1=v2=zero4();

v0=or4(and4(cmask,tdist4),

andnot4(cmask,set4(FLT_MAX)));

v0=or4(and4(v0,idxmask4),idxadd4);

v1=movelh4(v1,v0),t=v0;

v0=min4(v0,v1),v1=max4(v1,t);

v0=movehl4(v0,v1);

v1=shuff(v1,v0,0x88),t=v0;

v0=min4(v0,v1),v1=max4(v1,t);

v2=movehl4(v2,v1);

v3=v0,t=v2;

v2=min4(v2,v3),v3=max4(v3,t);

v0=shuff(movelh4(v1,v3),shuff(v0,v2,0x13),0x2d);

for (int j=(count-1); j >= 0; j--)

{

int idx=((uint*)&v0)[3-j]&3;

taskStack[tasks].node=&node->child[idx];

taskStack[tasks++].data=(numActive[idx]<<8)+idx;

}

}

}

else

{

rayHead[SIMDlane] -= numRays;

uint16* list=&rayStack[SIMDlane][rayHead[SIMDlane]];

int i=0;

for(; i<numRays>>2; i++)

{

int rayid=i<<2;

Ray* r[4]={ &rays[list[rayid+0]],

&rays[list[rayid+1]],

&rays[list[rayid+2]],

&rays[list[rayid+3]] };

// AoS => SoA conversion

float4 v1=shuff(r[0]->O.xyzw, r[1]->O.xyzw,68);

float4 v2=shuff(r[0]->O.xyzw, r[1]->O.xyzw,238);

float4 v3=shuff(r[2]->O.xyzw, r[3]->O.xyzw,68);

float4 v4=shuff(r[2]->O.xyzw, r[3]->O.xyzw,238);

float4 ox4=shuff(v1,v3,136);

float4 oy4=shuff(v1,v3,221);

float4 oz4=shuff(v2,v4,136);

float4 v5=shuff(r[0]->D.xyzw, r[1]->D.xyzw,68);

float4 v6=shuff(r[0]->D.xyzw, r[1]->D.xyzw,238);

float4 v7=shuff(r[2]->D.xyzw, r[3]->D.xyzw,68);

float4 v8=shuff(r[2]->D.xyzw, r[3]->D.xyzw,238);

float4 dx4=shuff(v5,v7,136);

float4 dy4=shuff(v5,v7,221);

float4 dz4=shuff(v6,v8,136);

159

for(int j=0 ; j<node->pcount ; j++)

{

Triangle* p=&prim[node->pidx[j]];

float4 n4x=set4(p->N.x), n4y=set4(p->N.y);

float4 n4z=set4(p->N.z), nw4=set4(p->N.w);

float4 d4=DOT128(dx4,dy4,dz4,n4x,n4y,n4z);

float4 d24=sub4(nw4,

DOT128(ox4,oy4,oz4,n4x,n4y,n4z));

float4 fres1=or4(cmpgt4(d4,zero4()),

xor4(d24,d4));

if (movemask4(fres1)==15) continue;

float4 ux4=set4(p->u.x), uy4=set4(p->u.y);

float4 uz4=set4(p->u.z), uw4=set4(p->u.w);

float4 vx4=set4(p->v.x), vy4=set4(p->v.y);

float4 vz4=set4(p->v.z), vw4=set4(p->v.w);

float4 p4x=add4(mul4(d4,ox4), mul4(d24,dx4));

float4 p4y=add4(mul4(d4,oy4), mul4(d24,dy4));

float4 p4z=add4(mul4(d4,oz4), mul4(d24,dz4));

float4 vu4=add4(DOT128(p4x,p4y,p4z,ux4,uy4,uz4),

mul4(d4,uw4));

float4 v24=sub4(d4,vu4);

float4 fres2=or4(xor4(vu4,v24),fres1);

float4 vv4=add4(DOT128(p4x,p4y,p4z,vx4,vy4,vz4),

mul4(d4,vw4));

float4 v34=sub4(sub4(d4,vu4),vv4);

float4 fres3=or4(fres2,xor4(vv4,v34));

if (movemask4(fres3)==15) continue;

float4 T4=mul4(d24,fastrcp(d4));

float4i mask=cmpgt4i(*(float4i*)&fres3,izero);

for (int k=0; k<4; k++)

{

float dist=((float*)&T4)[k];

if ((dist<r[k]->dist) && (((uint*)&mask)[k]))

{

r[k]->dist=dist;

r[k]->tri=p;

}

}

}

}

for(i<<=2; i<numRays ; i++)

{

Ray* r=&rays[list[i]];

for(int j=0; j<node->pcount; j++)

{

Triangle* p=&prim[node->pidx[j]];

float d=r->D.Dot(p->N);

if (d > 0) continue;

float d2=p->N.w-(r->O.Dot(p->N));

float v1=d * r->dist;

if (((*(uint*)&d2)>>31) != ((*(uint*)&v1)>>31))

continue;

vector3 P=d * r->O+d2 * r->D;

160

float u=P.Dot(p->u)+d * p->u.w,v2=d-u;

if (((*(uint*)&u)>>31) != ((*(uint*)&v2)>>31))

continue;

float v=P.Dot(p->v)+d * p->v.w,v3=d-u-v;

if (((*(uint*)&v)>>31) != ((*(uint*)&v3)>>31))

continue;

float T=d2/d;

if (T<r->dist) r->dist=T, r->tri=p;

}

}

}

}

}

161

D
A P P E N D I X

d.1 gpu path tracer data

These tables contain the raw data used in chapter 6. The left column contains brief
codes that represent the rendering techniques. They are:

rr Reference path tracer with Russian roulette and direct light estimation.

dpt Deterministic path termination algorithm.

rr/ris Reference path tracer with improved direct light estimation using RIS.

seg Generalized path regeneration algorithm using the segment loop.

seg/ris Combination of SEG and RIS.

rr/sng Single diffuse bounce version of the reference path tracer.

mis/ris Multiple importance sampling combined with RIS.

mis/ris/nop Version of the MIS algorithm that does not always complete the
last path (resulting in some bias).

For each scene and technique, we measured performance in terms of millions
of ray segments per second (the most objective performance measurement) as
well as milliseconds per generated frame. Both figures are the average of multiple
rendered frames. We also measured the average error of each render, compared to a
reference frame that was rendered using the same technique, using many samples
per pixel (tens of thousands). The used error metric is the root mean squared error
metric (rmse).

163

Sc
en

e
1

:S
po

nz
a

4
sp

p
8
sp

p
1

6
sp

p
3

2
sp

p
6

4
sp

p
1

2
8

sp
p

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

R
R

3
9

3
6

.2
2

7
2

.6
7

7
2

7
.3

9
7

2
.2

1
5

3
2

0
.7

2
7

1
.8

3
0

5
1

5
.3

7
7

1
.6

6
0

8
1

1
.0

6
7

1
.6

1
2

1
2

7
.9

1
7

1
.8

D
PT

3
0

4
0

.6
9

8
3

.0
6

6
3

1
.9

5
7

7
.0

1
3

8
2

4
.9

0
7

4
.9

2
8

2
1

8
.9

0
7

4
.0

5
7

0
1

3
.8

8
7

3
.5

1
1

4
4

1
0

.1
1

7
3

.4

R
R

/R
IS

4
8

2
4

.0
2

7
1

.4
9

5
1

8
.7

1
7

0
.4

1
8

8
1

3
.9

2
7

0
.6

3
7

4
1

0
.0

6
7

0
.6

7
4

5
7

.2
0

7
0

.7
1

4
8

9
5

.1
4

7
0

.7

D
PT

/R
IS

3
6

2
9

.5
5

8
2

.9
8

0
2

3
.6

3
7

6
.4

1
6

7
1

8
.0

2
7

4
.3

3
4

1
1

3
.2

4
7

3
.6

6
8

8
9

.5
9

7
3

.3
1

3
8

5
6

.8
9

7
3

.0

SE
G

3
9

3
6

.4
3

7
7

.3
7

3
2

7
.7

9
7

4
.5

1
5

4
2

0
.8

7
7

0
.5

3
1

9
1

5
.4

9
6

7
.8

6
5

2
1

1
.1

5
6

6
.1

1
3

1
7

8
.0

0
6

5
.3

SE
G

/R
IS

4
6

2
4

.2
1

8
0

.2
8

7
1

9
.1

6
7

4
.2

1
8

5
1

4
.1

5
7

0
.5

3
8

2
1

0
.1

9
6

8
.3

7
8

0
7

.2
5

6
6

.8
1

5
7

7
5

.1
7

6
6

.0

R
R

/S
N

G
3

5
3

6
.1

2
8

0
.1

6
9

2
7

.4
5

7
9

.5
1

3
8

2
0

.7
1

7
8
.6

2
7

4
1

5
.4

1
7

8
.7

5
4

6
1

1
.0

9
7

8
.8

1
0

9
0

7
.9

4
7

8
.8

R
R

/R
IS

/S
N

G
4

3
2

4
.1

1
7

8
.6

8
4

1
8

.7
3

7
8

.5
1

6
7

1
3

.9
6

7
8
.4

3
3

3
1

0
.0

9
7

8
.3

6
6

4
7

.2
2

7
8

.4
1

3
2

7
5

.1
7

7
8

.3

R
R

/S
PT

3
4

3
1

.4
2

8
2

.8
6

6
2

3
.0

1
7

8
.6

1
2

9
1

7
.6

8
7

6
.6

2
5

5
1

3
.6

3
7

8
.0

5
1

0
1

0
.5

2
7

7
.8

1
0

1
7

7
.9

7
7

8
.0

M
IS

/R
IS

5
2

2
4

.1
4

7
2

.0
9

8
1

8
.6

6
7

1
.3

1
9

1
1

3
.9

4
7

0
.9

3
7

7
1

0
.0

6
7

0
.8

7
4

9
7

.2
0

7
0

.7
1

4
9

2
5

.1
3

7
0

.7

M
IS

/R
IS

/N
O

P
4

8
2

4
.0

4
7

1
.4

9
5

1
8

.6
6

7
0

.4
1

8
8

1
3

.9
7

7
0
.6

3
7

4
1

0
.0

5
7

0
.6

7
4

5
7

.1
9

7
0

.7
1

4
8

7
5

.1
4

7
0

.8

164

Sc
en

e
2

:E
sc

he
r

4
sp

p
8

sp
p

1
6

sp
p

3
2

sp
p

6
4

sp
p

1
2

8
sp

p

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

R
R

6
2

3
5

.7
6

7
5

.8
1

2
3

2
8

.6
3

7
5
.4

2
4

5
2

2
.8

8
7

5
.2

4
8

8
1

8
.0

7
7

5
.2

9
7

6
1

4
.1

7
7

5
.1

1
9

4
6

1
0

.9
3

7
5
.1

D
PT

2
3

4
5

.7
3

1
2

1
.3

5
1

3
8

.1
8

1
1

1
.1

1
0

7
3

1
.4

4
1

0
7

.8
2

2
0

2
5

.3
0

1
0

5
.8

4
4

4
2

0
.4

3
1

0
5

.3
8

9
1

1
6

.3
5

1
0

5
.2

R
R

/R
IS

7
5

2
6

.2
6

7
1

.2
1

4
9

2
0

.8
2

7
0
.2

2
9

6
1

5
.9

2
7

0
.1

5
8

8
1

2
.1

3
7

0
.4

1
1

7
4

8
.8

8
7

0
.4

2
3

4
8

6
.6

9
6

9
.9

D
PT

/R
IS

2
7

3
5

.7
9

1
1

0
.4

6
0

2
8

.6
1

1
0

3
.5

1
2

6
2

2
.7

6
1

0
0

.3
2

5
6

1
8

.1
7

9
9

.7
5

1
8

1
3
.9

4
9

9
.0

1
0

4
2

1
0

.7
1

9
8
.7

SE
G

3
9

4
1

.4
3

8
8

.1
7

8
3

3
.5

5
8

3
.4

1
5

7
2

7
.1

7
8

0
.4

3
1

6
2

1
.6

9
7

8
.6

6
3

4
1

7
.2

2
7

7
.7

1
2

6
8

1
3

.4
8

7
7
.4

SE
G

/R
IS

4
6

3
1

.0
2

8
4

.0
9

1
2

4
.5

2
7

9
.4

1
8

5
1

9
.4

5
7

6
.3

3
7

0
1

5
.0

9
7

5
.3

7
4

2
1

1
.4

1
7

4
.6

1
4

8
6

8
.4

5
7

4
.2

R
R

/S
N

G
6

0
3

5
.6

4
7

7
.2

1
1

8
2

8
.6

4
7

7
.6

2
3

5
2

2
.8

1
7

7
.3

4
6

8
1

8
.1

6
7

7
.4

9
3

6
1

4
.1

8
7

7
.2

1
8

7
0

1
0

.9
3

7
7
.1

R
R

/R
IS

/S
N

G
7

2
2

6
.2

0
7

3
.3

1
4

2
2

0
.5

7
7

2
.6

2
8

1
1

6
.0

3
7

2
.8

5
6

1
1

2
.0

8
7

2
.7

1
1

2
2

8
.9

0
7

2
.6

2
2

3
8

6
.6

5
7

2
.3

R
R

/S
PT

4
8

3
6

.4
7

9
0

.9
9

3
2

9
.3

5
9

1
.9

1
8

2
2

3
.0

8
9

3
.3

3
6

0
1

8
.0

6
9

3
.7

7
1

7
1

4
.0

4
9

3
.9

1
4

3
4

1
0

.5
3

9
3
.3

M
IS

/R
IS

7
7

2
4

.2
3

7
2

.3
1

5
1

1
8

.1
5

7
0
.9

2
9

8
1

3
.4

2
7

0
.5

5
9

2
9

.6
4

7
0

.4
1

1
7

8
6

.8
4

7
0

.4
2

3
5

3
4

.9
1

6
9
.9

M
IS

/R
IS

/N
O

P
7

5
2

4
.0

8
7

1
.2

1
4

9
1

8
.0

0
7

0
.2

2
9

6
1

3
.2

8
7

0
.2

5
9

0
9

.5
9

7
0

.2
1

1
7

7
6

.8
6

7
0

.2
2

3
5

1
4

.9
3

6
9
.8

165

Sc
en

e
3

:L
uc

y
4
sp

p
8
sp

p
1

6
sp

p
3

2
sp

p
6

4
sp

p
1

2
8
sp

p

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

R
R

7
3

4
5

.2
4

4
7

.5
1

4
2

3
2
.0

4
4

7
.9

2
8

1
2

2
.9

9
4

7
.9

5
6

0
1

6
.7

1
4

7
.9

1
1

1
0

1
2

.4
2

4
8

.2
2

2
1

1
9

.5
2

4
8

.3

D
PT

3
2

5
2

.2
7

8
4

.3
7

0
3

8
.2

7
8

0
.9

1
4

6
2

8
.6

8
7

9
.1

2
9

6
2

1
.6

6
7

8
.7

5
9

7
1

6
.5

6
7

8
.4

1
1

9
9

1
2
.8

7
7

8
.2

R
R

/R
IS

8
6

2
5

.1
3

5
0

.6
1

6
9

1
8
.4

2
5

0
.8

3
3

5
1

3
.6

8
5

0
.9

6
6

4
1

0
.3

3
5

1
.2

1
3

2
1

8
.0

7
5

1
.3

2
6

4
8

6
.6

8
5

1
.1

D
PT

/R
IS

3
8

3
2

.5
8

9
2

.3
8

4
2

4
.7

3
8

6
.2

1
7

5
1

8
.8

8
8

4
.2

3
5

7
1

4
.5

2
8

3
.4

7
2

0
1

1
.3

7
8

3
.1

1
4

4
5

9
.2

4
8

3
.0

SE
G

4
8

4
9

.2
4

6
8

.4
9

9
3

4
.7

3
6

2
.2

1
9

4
2

5
.3

8
6

2
.2

3
8

2
1

8
.8

5
6

2
.3

7
6

0
1

4
.3

3
6

2
.2

1
5

1
2

1
1
.1

2
6

2
.3

SE
G

/R
IS

5
6

2
9

.1
8

7
3

.2
1

1
5

2
0
.6

4
6

7
.4

2
2

8
1

5
.7

3
6

7
.0

4
4

8
1

2
.2

6
6

7
.5

8
9

3
9

.8
8

6
7

.3
1

7
7

4
8

.2
4

6
7

.6

R
R

/S
N

G
6

4
4

5
.4

2
5

1
.5

1
2

5
3

2
.2

6
5

1
.7

2
4

5
2

3
.0

8
5

2
.3

4
8

5
1

6
.7

6
5

2
.6

9
6

4
1

2
.4

3
5

2
.7

1
9

2
5

9
.4

8
5

2
.8

R
R

/R
IS

/S
N

G
7

4
2

5
.1

9
5

5
.6

1
4

5
1

8
.3

4
5

6
.2

2
8

6
1

3
.7

3
5

6
.7

5
6

8
1

0
.3

8
5

6
.9

1
1

3
2

7
.9

8
5

6
.9

2
2

5
5

6
.5

5
5

7
.1

R
R

/S
PT

5
0

4
8

.4
3

6
7

.9
9

5
3

4
.5

0
6

9
.5

1
8

3
2

4
.5

5
7

2
.1

3
6

0
1

7
.9

3
7

3
.1

7
1

1
1

3
.4

0
7

3
.7

1
4

1
6

1
0
.2

1
7

3
.9

M
IS

/R
IS

8
9

2
5

.1
9

5
2

.3
1

7
3

1
8
.3

3
5

1
.2

3
3

8
1

3
.5

5
5

1
.2

6
6

7
1

0
.1

8
5

1
.3

1
3

2
7

7
.9

8
5

1
.3

2
6

4
4

6
.4

5
5

1
.3

M
IS

/R
IS

/N
O

P
8

6
2

5
.0

8
5

0
.6

1
6

9
1

8
.2

4
5

0
.8

3
3

5
1

3
.5

8
5

0
.9

6
6

5
1

0
.2

7
5

1
.1

1
3

2
5

8
.0

1
5

1
.2

2
6

3
7

6
.7

3
5

1
.3

166

Sc
en

e
4

:A
zt

ec
4

sp
p

8
sp

p
1

6
sp

p
3

2
sp

p
6

4
sp

p
1

2
8

sp
p

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

R
R

1
1

1
9

.6
9

2
1

1
.4

2
1

1
2
.8

1
2

0
6

.9
4

2
8
.6

3
2

0
0

.4
8

2
6
.0

3
2

0
2

.1
1

6
4

4
.3

0
2

0
0

.5
3

2
7

3
.1

4
2

0
0

.3

D
PT

8
2

5
.8

0
2

4
6

.9
1

7
1

6
.2

0
2

2
0

.1
3

4
1

0
.8

2
2

1
2

.8
6

9
7
.5

2
2

0
6

.1
1

3
8

5
.3

4
2

0
4

.2
2

7
4

3
.8

5
2

0
4

.8

R
R

/R
IS

1
4

1
9

.5
0

1
9

1
.1

2
8

1
2
.6

8
1

7
9

.7
5

5
8
.6

3
1

7
6

.7
1

0
8

6
.0

0
1

7
7

.0
2

1
6

4
.2

8
1

7
5

.7
4

3
1

3
.1

3
1

7
5

.4

D
PT

/R
IS

1
1

2
5

.4
2

2
0

1
.9

2
3

1
6
.0

9
1

8
8

.0
4

5
1

0
.8

1
1

8
5

.3
9

1
7
.5

1
1

8
0

.1
1

8
1

5
.3

2
1

7
9

.5
3

6
1

3
.8

5
1

7
9

.3

SE
G

1
2

1
9

.9
9

2
3

1
.8

2
1

1
4
.1

2
2

4
0

.1
4

3
9
.0

7
2

2
8

.7
8

8
6
.2

1
2

2
0

.4
1

7
9

4
.3

7
2

1
5

.1
3

5
9

3
.1

7
2

1
3

.6

SE
G

/R
IS

1
5

1
9

.7
8

2
0

8
.9

2
7

1
4
.0

8
2

1
1

.2
5

6
9
.0

5
1

9
8

.2
1

1
2

6
.1

7
1

9
5

.6
2

2
8

4
.3

8
1

9
0

.8
4

5
6

3
.1

6
1

9
0

.2

R
R

/S
N

G
1

0
1

9
.9

8
2

3
1

.4
1

9
1

3
.0

1
2

2
6

.8
3

8
8
.7

0
2

1
9

.8
7

4
6
.0

7
2

2
2

.1
1

4
7

4
.3

4
2

2
1

.8
2

9
3

3
.1

6
2

2
1

.6

R
R

/R
IS

/S
N

G
1

3
1

9
.7

8
2

0
4

.2
2

5
1

2
.9

1
2

0
0

.0
4

9
8
.7

0
1

9
6

.9
9

8
6
.0

7
1

9
3

.5
1

9
4

4
.3

3
1

9
4

.0
3

8
7

3
.1

5
1

9
3

.8

R
R

/S
PT

1
1

1
9

.5
8

2
1

6
.6

2
1

1
2
.5

6
2

0
4

.9
4

1
8
.4

6
1

9
9

.4
8

1
5
.9

1
1

9
6

.8
1

6
0

4
.2

3
1

9
7

.0
3

2
0

3
.0

8
1

9
6

.2

M
IS

/R
IS

1
5

1
9

.4
4

1
8

6
.8

2
8

1
2
.7

0
1

8
4

.0
5

5
8
.6

1
1

7
9

.2
1

0
9

6
.0

0
1

7
6

.8
2

1
6

4
.3

1
1

7
6

.4
4

3
1

3
.1

4
1

7
5

.8

M
IS

/R
IS

/N
O

P
1

5
1

9
.4

4
1

7
8

.4
2

8
1

2
.7

2
1

7
9

.8
5

5
8
.6

0
1

7
6

.7
1

0
8

6
.0

1
1

7
7

.0
2

1
5

4
.2

9
1

7
6

.5
4

3
0

3
.1

3
1

7
5

.8

167

Sc
en

e
5

:M
IS

Te
st

4
sp

p
8
sp

p
1

6
sp

p
3

2
sp

p
6

4
sp

p
1

2
8

sp
p

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

m
s

rm
se

m
ra

ys
m

s
rm

se
m

ra
ys

R
R

4
0

5
0

.6
4

1
0

9
.7

7
8

3
9

.8
8

1
1

0
.7

1
5

4
3

1
.1

6
1

1
0

.9
3

0
6

2
4

.4
2

1
1

1
.1

6
0

8
1

9
.4

9
1

1
1

.5
1

2
1

2
1

5
.4

4
1

1
1

.3

D
PT

1
3

5
6

.8
5

2
1

3
.8

2
9

4
6

.0
4

1
9

5
.0

5
9

3
6
.8

4
1

9
3

.1
1

1
9

2
9

.2
0

1
9

2
.3

2
4

1
2

3
.2

5
1

9
0

.2
4

8
2

1
8

.5
4

1
9

0
.3

R
R

/R
IS

4
7

3
2

.7
3

9
9

.2
9

2
2

4
.3

4
9

8
.9

1
8

3
1

8
.5

0
9

8
.5

3
6

3
1

4
.2

9
9

8
.8

7
2

2
1

1
.1

3
9

9
.1

1
4

3
9

8
.7

3
9

8
.6

D
PT

/R
IS

1
6

4
0

.7
9

1
7

7
.1

3
4

3
1

.7
6

1
7

4
.0

7
1

2
4
.6

2
1

6
8

.4
1

4
5

1
9

.2
5

1
6

5
.5

2
9

2
1

5
.1

6
1

6
4

.7
5

8
4

1
2

.0
4

1
6

4
.9

SE
G

2
2

5
4

.7
8

1
6

5
.2

6
2

4
3

.4
7

1
0

8
.9

3
8

0
3

4
.0

4
3

4
.5

2
0

6
2

6
.6

4
1

2
5

.8
3

6
9

2
1

.0
2

1
3

9
.2

7
1

2
1

6
.7

3
1

4
3

.7

SE
G

/R
IS

2
6

3
8

.1
1

1
4

8
.7

6
8

2
7

.9
7

1
0

3
.4

1
2

8
2

1
.3

5
1

0
7

.6
2

3
6

1
6

.3
5

1
1

5
.5

4
4

3
1

2
.6

3
1

2
2

.0
8

4
2

9
.8

9
1

2
7

.9

R
R

/S
N

G
3

9
5

0
.7

8
1

1
1

.0
7

5
4

0
.0

5
1

1
3

.6
1

4
9

3
1
.2

3
1

1
3

.2
2

9
5

2
4

.4
5

1
1

3
.8

5
8

6
1

9
.5

0
1

1
4

.3
1

1
7

0
1

5
.6

2
1

1
3

.9

R
R

/R
IS

/S
N

G
4

5
3

2
.8

4
1

0
2

.5
8

8
2

4
.3

9
1

0
2

.1
1

7
6

1
8
.4

4
1

0
1

.1
3

4
8

1
4

.2
9

1
0

1
.8

6
9

3
1

1
.1

5
1

0
2

.0
1

3
8

3
8

.8
4

1
0

1
.3

R
R

/S
PT

3
1

5
1

.9
8

1
2

8
.9

5
8

4
1

.0
1

1
3

3
.1

1
1

2
3

1
.6

4
1

3
6

.0
2

2
0

2
4

.6
6

1
3

8
.2

4
3

7
1

9
.4

9
1

3
9

.0
8

7
0

1
5

.5
7

1
3

8
.6

M
IS

/R
IS

4
9

2
3

.8
4

9
9

.6
9

4
1

6
.3

3
9

9
.1

1
8

5
1

1
.3

3
9

8
.5

3
6

5
8

.0
7

9
8
.8

7
2

6
5

.7
1

9
8

.8
1

4
4

8
4

.1
6

9
8
.1

M
IS

/R
IS

/N
O

P
4

7
2

3
.8

0
9

9
.2

9
3

1
6

.3
7

9
7

.9
1

8
4

1
1
.3

7
9

8
.0

3
6

4
8

.0
2

9
8
.6

7
2

5
5

.7
6

9
8

.7
1

4
4

7
4

.1
5

9
8
.0

168

B I B L I O G R A P H Y

[1] The 3DO Company, 1991. (Cited on page 2.)

[2] 3D Realms. Duke Nukem 3D, 1996. URL http://www.3drealms.com. (Cited
on page 3.)

[3] 3dfx Interactive. VooDoo Graphics. San Jose, CA, USA, 1996. URL http:

//www.3dfx.com. (Cited on page 3.)

[4] M. Abrash. Michael Abrash’s Graphics Programming Black Book (Special Edition).
Coriolis Group Books, 1997. ISBN 1576101746. (Cited on page 76.)

[5] S. J. Adelson and L. F. Hodges. Generating Exact Ray-Traced Animation
Frames by Reprojection. IEEE Computer Graphics Applications, 15(3):43–52,
May 1995. ISSN 0272-1716. (Cited on page 6.)

[6] T. Aila and S. Laine. Alias-Free Shadow Maps. In Proc. Eurographics Sym-
posium on Rendering 2004, pages 161–166. Eurographics Association, 2004.
(Cited on page 54.)

[7] T. Aila and S. Laine. Understanding the Efficiency of Ray Traversal on GPUs.
In HPG ’09: Proceedings of the Conference on High Performance Graphics 2009,
pages 145–149, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-603-8.
(Cited on pages 96, 122, and 124.)

[8] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time Rendering 3rd
Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008. ISBN 987-1-56881-424-7.
(Cited on page 4.)

[9] J. Amanatides and A. Woo. A Fast Voxel Traversal Algorithm for Ray Tracing.
In In Eurographics ’87, pages 3–10, 1987. (Cited on page 22.)

[10] J. Ante. Unity 3D. http://www.unity3d.com, 2005. (Cited on page 33.)

[11] A. Appel. Some Techniques for Shading Machine Renderings of Solids. In
AFIPS ’68 (Spring): Proceedings of the April 30–May 2, 1968, spring joint computer
conference, pages 37–45, New York, NY, USA, 1968. ACM. (Cited on pages 12

and 37.)

[12] J. Arvo. Backward Ray Tracing. In In ACM SIGGRAPH ’86 Course Notes -
Developments in Ray Tracing, pages 259–263, 1986. (Cited on page 54.)

[13] J. Arvo. Linear-time Voxel Walking for Octrees. Ray Tracing News 12(1),
1988. (Cited on page 24.)

169

http://www.3drealms.com
http://www.3dfx.com
http://www.3dfx.com

[14] J. Arvo and D. Kirk. Particle Transport and Image Synthesis. In Proceedings
of the 17th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’90, pages 63–66, New York, NY, USA, 1990. ACM. ISBN 0-89791-
344-2. (Cited on pages 15 and 107.)

[15] J. Arvo, P. Hanrahan, H. W. Jensen, D. Mitchell, M. Pharr, P. Shirley, and
M. Fajardo. State of the Art in Monte Carlo Ray Tracing for Realistic Image
Synthesis. Siggraph 2001 course, 2001. (Cited on page 14.)

[16] ATI. Stream Technology, 2010. URL www.amd.com/stream. (Cited on page 97.)

[17] B. G. Baumgart. Winged Edge Polyhedron Representation. Technical report,
Stanford University, Stanford, CA, USA, 1972. (Cited on page 57.)

[18] K. Beason. SmallPT, 2007. URL www.kevinbeason.com/smallpt. (Cited on
pages 97 and 124.)

[19] P. Bekaert. Hierarchical and Stochastic Algorithms for Radiosity. PhD thesis,
Department of Computer Science, Katholieke Universiteit Leuven, Leuven,
Belgium, 1999. (Cited on page 14.)

[20] M. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990. ISBN 0-13-711821-X. (Cited
on page 32.)

[21] C. Benthin. Realtime Ray Tracing on Current CPU Architectures. PhD thesis,
Saarland University, Saarbrücken, Germany, January 2006. (Cited on pages 42,
80, and 122.)

[22] C. Benthin, I. Wald, S. Woop, M. Ernst, and W. R. Mark. Combining Single
and Packet Ray Tracing for Arbitrary Ray Distributions on the Intel MIC
Architecture. IEEE Transactions on Visualization and Computer Graphics, 99

(PrePrints), 2011. ISSN 1077-2626. (Cited on page 78.)

[23] J. L. Bentley. Multidimensional Binary Search Trees used for Associative
Searching. Commun. ACM, 18(9):509–517, September 1975. ISSN 0001-0782.
(Cited on page 22.)

[24] T. Berger-Perrin. The Once Known As SmallPT, 2009. URL http://code.

google.com/p/tokaspt. (Cited on pages 97 and 124.)

[25] L. Bergman, H. Fuchs, E. Grant, and S. Spach. Image Rendering by Adaptive
Refinement. In Proceedings of the 13th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’86, pages 29–37, New York, NY, USA,
1986. ACM. ISBN 0-89791-196-2. (Cited on page 6.)

[26] J. Bigler, A. Stephens, and S. G. Parker. Design for Parallel Interactive Ray
Tracing Systems. In Proceedings of IEEE Symposium on Interactive Ray Tracing,

170

www.amd.com/stream
www.kevinbeason.com/smallpt
http://code.google.com/p/tokaspt
http://code.google.com/p/tokaspt

pages 187–196, Los Alamitos, CA, USA, 2006. IEEE Computer Society. ISBN
1-4244-0693-5. (Cited on page 6.)

[27] J. Bikker. Real-time Ray Tracing through the Eyes of a Game Developer.
In Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, RT ’07,
pages 1–10, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
978-1-4244-1629-5. (Cited on pages 6, 31, 37, 61, 78, and 122.)

[28] J. Bikker. Improving Data Locality for Efficient In-Core Path Tracing. Com-
puter Graphics Forum, 2012. (Cited on page 75.)

[29] J. Bikker and R. Reijerse. A Precalculated Point Set for Caching Shading In-
formation. In Eurographics 2009 - Short Papers, pages 65–68, Munich, Germany,
2009. Eurographics Association. (Cited on page 53.)

[30] D. Binks. Dynamic Resolution Rendering, 2011. URL http://software.

intel.com/file/35451. (Cited on page 32.)

[31] J. F. Blinn and M. E. Newell. Texture and Reflection in Computer Generated
Images. Commun. ACM, 19(10):542–547, October 1976. ISSN 0001-0782. (Cited
on page 4.)

[32] R. Borgo and K. Brodlie. State of the Art Report on GPU Visualization. Virtual
Reality, 2009. (Cited on page 95.)

[33] S. Boulos, D. Edwards, J. Dylan Lacewell, J. Kniss, J. Kautz, P. Shirley, and
I. Wald. Interactive Distribution Ray Tracing. Technical Report, SCI Institute,
University of Utah, No UUSCI-2006-022, 2006. (Cited on page 7.)

[34] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley, and I. Wald.
Packet-based Whitted and Distribution Ray Tracing. In GI ’07: Proceedings
of Graphics Interface 2007, pages 177–184, New York, NY, USA, 2007. ACM.
ISBN 978-1-56881-337-0. (Cited on pages 75 and 122.)

[35] S. Boulos, I. Wald, and C. Benthin. Adaptive Ray Packet Reordering. In
Proceedings of IEEE Symposium on Interactive Ray Tracing 2008, pages 131–138,
Los Alamitos, CA, USA, 2008. IEEE Computer Society. ISBN 978-1-4244-2741-
3. (Cited on page 79.)

[36] D. Braben and I. Bell. Elite, 1984. URL http://www.elite.com. (Cited on
page 2.)

[37] T. Bramwell. Doom 4 Three Times Rage Visual Quality, 2011. URL http://

www.eurogamer.net/articles/doom-4-three-times-rage-visual-quality.
(Cited on page 124.)

[38] J. Bresenham. Algorithm for Computer Control of a Digital Plotter. IBM
Systems Journal, 4(1):25–30, 1965. (Cited on page 22.)

171

http://software.intel.com/file/35451
http://software.intel.com/file/35451
http://www.elite.com
http://www.eurogamer.net/articles/doom-4-three-times-rage-visual-quality
http://www.eurogamer.net/articles/doom-4-three-times-rage-visual-quality

[39] R. Bringhurst. The Elements of Typographic Style. Version 2.5. Hartley & Marks,
Publishers, Point Roberts, WA, USA, 2002. (Cited on page 195.)

[40] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s Perspec-
tive. Addison-Wesley Publishing Company, USA, 2nd edition, 2010. ISBN
0136108040, 9780136108047. (Cited on page 76.)

[41] B. Budge, T. Bernardin, J. A. Stuart, S. Sengupta, K. I. Joy, and J. D. Owens.
Out-of-core Data Management for Path Tracing on Hybrid Resources. Com-
puter Graphics Forum, 28(2):385–396, 2009. (Cited on page 79.)

[42] J. Carmack. Catacomb 3D, 1991. URL http://www.id-software.com. (Cited
on page 2.)

[43] J. Carmack. Quake II, 1997. URL http://www.quake.com. (Cited on page 3.)

[44] J. Carmack. ID Software Debuts ID Tech 5 Press Release.
http://www.idsoftware.com/business/press, 2007. (Cited on page 32.)

[45] N. A. Carr, J. D. Hall, and J. C. Hart. The Ray Engine. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS
’02, pages 37–46, Aire-la-Ville, Switzerland, 2002. Eurographics Association.
ISBN 1-58113-580-7. (Cited on page 6.)

[46] J. H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms.
Commun. ACM, 19(10):547–554, October 1976. ISSN 0001-0782. (Cited on
page 32.)

[47] D. Cline, J. Talbot, and P. Egbert. Energy Redistribution Path Tracing. In
ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 1186–1195, New York,
NY, USA, 2005. ACM. (Cited on page 97.)

[48] M. F. Cohen, J. Wallace, and P. Hanrahan. Radiosity and Realistic Image
Synthesis. Academic Press Professional, Inc., San Diego, CA, USA, 1993. ISBN
0-12-178270-0. (Cited on page 14.)

[49] Commodore. Commodore Amiga 1000, 1985. (Cited on page 3.)

[50] R. L. Cook. Stochastic Sampling in Computer Graphics. ACM Trans. Graph.,
5(1):51–72, January 1986. ISSN 0730-0301. (Cited on page 56.)

[51] R. L. Cook, T. Porter, and L. Carpenter. Distributed Ray Tracing. In Proceedings
of the 11th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’84, pages 137–145, New York, NY, USA, 1984. ACM. ISBN
0-89791-138-5. (Cited on pages 5, 13, and 37.)

[52] Valve Corporation. Half-Life 2, 2004. URL http://www.valve-software.com.
(Cited on page 3.)

172

http://www.id-software.com
http://www.quake.com
http://www.valve-software.com

[53] K. Crane. Importance Sampling for Monte Carlo Ray Tracing. California
Institute of Technology, 2006. (Cited on page 19.)

[54] K. Crane. Bias in Rendering. California Institute of Technology, 2006. (Cited
on page 19.)

[55] Chris Crawford. The Art of Computer Game Design. Osborne/McGraw-Hill,
Berkeley, CA, USA, 1984. ISBN 0881341177. (Cited on page 2.)

[56] Crytek. Far Cry, 2004. (Cited on page 3.)

[57] C. Dachsbacher, P. Slusallek, T. Davidovic, T. Engelhardt, M. Phillips, and
I. Georgiev. 3D Rasterization - Unifying Rasterization and Ray Casting.
Technical Report, 2009. (Cited on page 13.)

[58] T. Dahmen, C. Vogelgesang, J. Guenther, J. Schmittler, and C. Benthin. Oasen,
2004. (Cited on page 123.)

[59] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J. Ahn, N. Jayasena,
U. J. Kapasi, A. Das, J. Gummaraju, and I. Buck. Merrimac: Supercomputing
with Streams. In Proceedings of the 2003 International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC’03), November
2003. (Cited on page 97.)

[60] H. Dammertz, J. Hanika, and A. Keller. Shallow Bounding Volume Hier-
archies for Fast SIMD Ray Tracing of Incoherent Rays. Computer Graphics
Forum, 27(4):1225–1233, 2008. (Cited on pages 23, 28, 80, and 86.)

[61] H. Dammertz, D. Sewtz, J. Hanika, and H. P. A. Lensch. Edge-avoiding A-
Trous wavelet transform for fast global illumination filtering. In Proceedings
of the Conference on High Performance Graphics, HPG ’10, pages 67–75, Aire-la-
Ville, Switzerland, Switzerland, 2010. Eurographics Association. (Cited on
page 143.)

[62] Holger Dammertz, Alexander Keller, and Hendrik Lensch. Progressive point-
light-based global illumination. Computer Graphics Forum, 29(8):2504–2515,
2010. (Cited on page 143.)

[63] Dann-Ball. Ray Trace Fighter, 2011. URL http://dan-ball.jp/en/javagame/

raytracing. (Cited on page 123.)

[64] K. Debattista, P. Dubla, L. Santos, and A. Chalmers. Wait-Free Shared-
Memory Irradiance Caching. IEEE Comput. Graph. Appl., 31(5):66–78, Septem-
ber 2011. ISSN 0272-1716. (Cited on page 55.)

[65] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales. AltiVec Extension
to PowerPC Accelerates Media Processing. IEEE Micro, 20:85–95, March 2000.
ISSN 0272-1732. (Cited on pages 25 and 77.)

173

http://dan-ball.jp/en/javagame/raytracing
http://dan-ball.jp/en/javagame/raytracing

[66] M. A. Z. Dippé and E. H. Wold. Antialiasing through Stochastic Sampling.
In Proceedings of the 12th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’85, pages 69–78, New York, NY, USA, 1985. ACM.
ISBN 0-89791-166-0. (Cited on page 56.)

[67] P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. R. Mark. Razor: An
Architecture for Dynamic Multiresolution Ray Tracing. ACM Trans. Graph.,
30(5):115:1–115:26, October 2011. ISSN 0730-0301. (Cited on pages 6 and 38.)

[68] K. Dmitriev, V. Havran, and H. P. Seidel. Faster Ray Tracing with SIMD
Shaft Culling. Research Report MPI-I-2004-4-006, Max-Planck-Institut fï¿œr
Informatik, Saarbrücken, Germany, December 2004. (Cited on page 25.)

[69] M. Doggett. AMD’s Radeon HD 2900. Graphics Hardware 2007, August 2007.
(Cited on page 77.)

[70] A. S. Douglas. Noughts and Crosses. EDSAC, 1952. (Cited on page 2.)

[71] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Alrich, and M. Mineev-
Weinstein. ROAMing Terrain: Real-time Optimally Adapting Meshes. Tech.
Rep. UCRL-JC-127870, August 1997. (Cited on page 32.)

[72] K. A. Duke and W. A. Wall. A Professional Graphics Controller. IBM Systems
Journal, 24(1):14–25, March 1985. ISSN 0018-8670. (Cited on page 3.)

[73] P. DutrÃ©. Global Illumination Compendium, 2001. (Cited on pages 15

and 18.)

[74] L. Dymchenko. AntiPlanet2.0, 2009. (Cited on page 123.)

[75] C. M. Erikson. Hierarchical Levels of Detail to Accelerate the Rendering of Large
Static and Dynamic Polygonal Environments. PhD thesis, The University of
North Carolina at Chapel Hill, 2000. (Cited on page 32.)

[76] M. Ernst. Embree - Photo-Realistic Ray Tracing Kernels, 2012. (Cited on
page 6.)

[77] M. Ernst and G. Greiner. Multi Bounding Volume Hierarchies. In Proceedings
of the IEEE Symposium on Interactive Ray Tracing, pages 35–40, 2008. (Cited on
pages 23, 28, and 80.)

[78] M. Evans. 3D Monster Maze, 1981. URL http://www.monstermaze.com.
(Cited on page 2.)

[79] F.A.N. BowlXTreme, 2003. (Cited on page 123.)

[80] J. D. Foley and A. van Dam. Fundamentals of Interactive Computer Graphics.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1982.
ISBN 0-201-14468-9. (Cited on page 11.)

174

http://www.monstermaze.com

[81] T. Foley and J. Sugerman. KD-tree Acceleration Structures for a GPU Ray-
tracer. In HWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 15–22, New York, NY, USA, 2005. ACM.
ISBN 1-59593-086-8. (Cited on pages 6, 96, and 122.)

[82] H. Friedrich, J. Günther, A. Dietrich, M. Scherbaum, H. P. Seidel, and
P. Slusallek. Exploring the Use of Ray Tracing for Future Games. In Sandbox
’06: Proceedings of the 2006 ACM SIGGRAPH symposium on Videogames, pages
41–50, New York, NY, USA, 2006. ACM. ISBN 1-59593-386-7. (Cited on
pages 7, 31, and 37.)

[83] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated Ray-Tracing System.
IEEE Computer Graphics and Applications, 6:16–26, 1986. ISSN 0272-1716. (Cited
on page 22.)

[84] T. Furtak, J. Amaral, N. José, and R. Niewiadomski. Using SIMD Registers
and Instructions to Enable Instruction-Level Parallelism in Sorting Algo-
rithms. In Proceedings of the nineteenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’07, pages 348–357, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-667-7. (Cited on page 30.)

[85] M. N. Gamito and S. C. Maddock. Accurate Multidimensional Poisson-disk
Sampling. ACM Trans. Graph., 29:8:1–8:19, December 2009. ISSN 0730-0301.
(Cited on page 56.)

[86] K. Garanzha and C. Loop. Fast Ray Sorting and Breadth-First Packet Traversal
for GPU Ray Tracing. Computer Graphics Forum, 29:289–298, 2010. (Cited on
pages 79 and 96.)

[87] Eduardo S. L. Gastal and Manuel M. Oliveira. Adaptive Manifolds for
Real-Time High-Dimensional Filtering. ACM TOG, 31(4):33:1–33:13, 2012.
Proceedings of SIGGRAPH 2012. (Cited on page 143.)

[88] P. N. Glaskowsky. NVIDIA’s Fermi: The First Complete GPU Computing
Architecture. Technical report, NVidia, 2009. (Cited on page 77.)

[89] A. S. Glassner. Space Subdivision for Fast Ray Tracing. IEEE Computer
Graphics and Applications, 4:15–22, 1984. (Cited on page 21.)

[90] A. S. Glassner. A Model for Fluorescence and Phosphorescence. In Proceedings
Fifth Eurographics Workshop on Rendering (1994), pages 57–68, 1994. (Cited on
page 11.)

[91] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierarchies for
Ray Tracing. IEEE Computer Graphics Applications, 7(5):14–20, 1987. ISSN
0272-1716. (Cited on page 22.)

175

[92] T. T. Goldsmith and E. R. Mann. Cathode Ray Amusement Device. U.S.
Patent no. 2 455 992, 1948. (Cited on page 2.)

[93] S. W. Golomb. Run-Length Encodings. IEEE Transactions on Information
Theory, 12:399–401, September 1966. (Cited on page 62.)

[94] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. Modeling
the Interaction of Light between Diffuse Surfaces. In Proceedings of the 11th
annual conference on Computer graphics and interactive techniques, SIGGRAPH
’84, pages 213–222, New York, NY, USA, 1984. ACM. ISBN 0-89791-138-5.
(Cited on page 10.)

[95] H. Gouraud. Continuous Shading of Curved Surfaces. IEEE Trans. Comput.,
20(6):623–629, June 1971. ISSN 0018-9340. (Cited on page 54.)

[96] C. Gribble and K. Ramani. Coherent Ray Tracing via Stream Filtering. In
Interactive Ray Tracing (Aug. 2008), no. 3, pages 59–66, 2008. (Cited on page 79.)

[97] J. Günther, S. Popov, H. P. Seidel, and P. Slusallek. Realtime Ray Tracing on
GPU with BVH-based Packet Traversal. In Proceedings of the IEEE/Eurographics
Symposium on Interactive Ray Tracing 2007, pages 113–118, September 2007.
(Cited on pages 6 and 96.)

[98] N. Guy. Photonotes Dictionary of Photography, 2004. URL http://www.

photonotes.org. (Cited on page 32.)

[99] T. Hachisuka, W. Jarosz, R. P. Weistroffer, K. Dale, G. Humphreys, M. Zwicker,
and H. W. Jensen. Multidimensional Adaptive Sampling and Reconstruction
for Ray Tracing. In ACM SIGGRAPH 2008 papers, SIGGRAPH ’08, pages
33:1–33:10, New York, NY, USA, 2008. ACM. ISBN 978-1-4503-0112-1. (Cited
on page 56.)

[100] P. Hanrahan. Using Caching and Breadth-first Search to Speed up Ray-tracing.
In Proceedings on Graphics Interface ’86/Vision Interface ’86, pages 56–61, Toronto,
Ont., Canada, Canada, 1986. Canadian Information Processing Society. (Cited
on page 79.)

[101] P. Hanrahan, D. Salzman, and L. Aupperle. A Rapid Hierarchical Radiosity
Algorithm. In Proceedings of the 18th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’91, pages 197–206, New York, NY, USA,
1991. ACM. ISBN 0-89791-436-8. (Cited on page 14.)

[102] J. M. Hasenfratz, M. Lapierre, N. Holzschuch, and F. Sillion. A survey of
Real-Time Soft Shadows Algorithms. Computer Graphics Forum, 22(4):753–774,
dec 2003. (Cited on page 4.)

[103] V. Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis, Department of
Computer Science and Engineering, Faculty of Electrical Engineering, Czech

176

http://www.photonotes.org
http://www.photonotes.org

Technical University in Prague, November 2000. URL http://www.cgg.cvut.

cz/~havran/phdthesis.html. (Cited on page 24.)

[104] V. Havran, T. Kopal, J. Bittner, and J. Žára. Fast Robust BSP Tree Traversal
Algorithm for Ray Tracing. Journal of Graphics Tools, 2(4):15–23, January 1998.
ISSN 1086-7651. (Cited on page 22.)

[105] M. Hašan, F. Pellacini, and K. Bala. Matrix Row-Column Sampling for the
Many-Light Problem. In ACM SIGGRAPH 2007 papers, SIGGRAPH ’07, New
York, NY, USA, 2007. ACM. (Cited on page 60.)

[106] H. Hey and W. Purgathofer. Real-Time Rendering of Globally Illuminated
Soft Glossy Scenes With Directional Light Maps. Technical Report TR-186-2-
02-05, Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, March 2002.
(Cited on page 54.)

[107] M. Hollis, D. Doak, and D. Botwood. GoldenEye 007. Published by Nintendo,
1997. (Cited on page 54.)

[108] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive k-D Tree
GPU Raytracing. In I3D ’07: Proceedings of the 2007 symposium on Interactive
3D graphics and games, pages 167–174, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-628-8. (Cited on pages 6, 96, and 122.)

[109] P. Hsieh. Programming Optimization, 2004. URL http://www.

azillionmonkeys.com/qed/optimize.html. (Cited on page 20.)

[110] W. Hunt and W. R. Mark. Adaptive Acceleration Structures in Perspective
Space. In In 2008 IEEE Symposium on Interactive Ray Tracing. IEEE, 2008. (Cited
on page 13.)

[111] W. Hunt, W. R. Mark, and G. Stoll. Fast kD-tree Construction with an
Adaptive Error-Bounded Heuristic. Symposium on Interactive Ray Tracing, 0:
81–88, 2006. (Cited on page 31.)

[112] J. Hurley, E. Kapustin, A. Reshetov, and A. Soupikov. Fast Ray Tracing for
Modern General Purpose CPU. In In Proceedings of Graphicon, 2002. (Cited
on page 22.)

[113] Atari Inc. Hard Drivin’, 1989. URL http://www.atari.com. (Cited on page 3.)

[114] Intel. Intel Many Integrated Core Architecture, 2010. URL http://download.

intel.com/pressroom/archive/reference/ISC2010Skaugenkeynote.pdf.
(Cited on pages 77 and 78.)

[115] T. Ize, I. Wald, C. Robertson, and S. G Parker. An Evaluation of Parallel Grid
Construction for Ray Tracing Dynamic Scenes. In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, pages 27–55, 2006. (Cited on page 22.)

177

http://www.cgg.cvut.cz/~havran/phdthesis.html
http://www.cgg.cvut.cz/~havran/phdthesis.html
http://www.azillionmonkeys.com/qed/optimize.html
http://www.azillionmonkeys.com/qed/optimize.html
http://www.atari.com
http://download.intel.com/pressroom/archive/reference/ISC 2010 Skaugen keynote.pdf
http://download.intel.com/pressroom/archive/reference/ISC 2010 Skaugen keynote.pdf

[116] T. Ize, I. Wald, and S. G. Parker. Asynchronous BVH Construction for Ray
Tracing Dynamic Scenes on Parallel Multi-Core Architectures. In Jean M.
Favre, Paulo Santos, and Dirk Reiners, editors, Eurographics Symposium on
Parallel Graphics and Visualization, EGPGV 2007, Lugano, Switzerland, pages
101–108. Eurographics Association, 2007. ISBN 978-3-905673-50-0. (Cited on
page 31.)

[117] T. Ize, I. Wald, and S. G. Parker. Ray Tracing with the BSP Tree. In Proceedings
of the IEEE Symposium on Interactive Ray Tracing, Washington, DC, USA, 2008.
IEEE Computer Society. (Cited on page 22.)

[118] T. Ize, C. Brownlee, and C. D. Hansen. Real-Time Ray Tracer for Visualizing
Massive Models on a Cluster. In Torsten Kuhlen, Renato Pajarola, and Kun
Zhou, editors, EGPGV, pages 61–69. Eurographics Association, 2011. ISBN
978-3-905674-32-3. (Cited on page 6.)

[119] D. Pohl C. Vogelsang J. Schmittler, T. Dahmen and P. Slusallek. Ray Trac-
ing for Current and Future Games. In Proceedings of 34. Jahrestagung der
Gesellschaft fur Informatik, 2004. (Cited on page 7.)

[120] F. W. Jansen. Data structures for Ray Tracing. In Proceedings of a workshop
(Eurographics Seminars on Data structures for raster graphics, pages 57–73, New
York, NY, USA, 1986. Springer-Verlag New York, Inc. ISBN 0-387-16310-7.
(Cited on pages 22 and 24.)

[121] H. W. Jensen. Global Illumination using Photon Maps. In Proceedings of the
eurographics workshop on Rendering techniques ’96, pages 21–30, London, UK,
1996. Springer-Verlag. ISBN 3-211-82883-4. (Cited on pages 14, 20, and 54.)

[122] L. S. Jensen and R. Golias. Deep-Water Animation and Rendering, 2001. URL
http://www.gamasutra.com/gdce/2001/jensen/jensen_03.htm. (Cited on
page 4.)

[123] S. Badt Jr. Two Algorithms Taking Advantage of Temporal Coherence in Ray
Tracing. The Visual Computer, 4:123–132, September 1988. (Cited on page 6.)

[124] Jromang. SmallLuxGPU, 2009. URL http://www.luxrender.net/wiki/SLG.
(Cited on pages 97 and 124.)

[125] J. T. Kajiya. The Rendering Equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’86,
pages 143–150, New York, NY, USA, 1986. ACM. ISBN 0-89791-196-2. (Cited
on pages 5, 10, 14, and 37.)

[126] J. Kalojanov and P. Slusallek. A Parallel Algorithm for Construction of
Uniform Grids. In Proceedings of the Conference on High Performance Graphics
2009, HPG ’09, pages 23–28, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-603-8. (Cited on page 31.)

178

http://www.gamasutra.com/gdce/2001/jensen/jensen_03.htm
http://www.luxrender.net/wiki/SLG

[127] H. Kamiya and A. Inaba. Okami, 2006. (Cited on page 122.)

[128] D. Kanter. AMD’s Cayman GPU Architecture, 2010. URL http://

www.realworldtech.com/page.cfm?ArticleID=RWT121410213827. (Cited on
page 97.)

[129] R. Karrenberg, D. Rubinstein, P. Slusallek, and S. Hack. AnySL: Efficient and
Portable Shading for Ray Tracing. In HPG ’10: Proceedings of the Conference on
High Performance Graphics, 2010. (Cited on page 142.)

[130] N. D. Kehtarnavaz and M. Gamadia. Real-Time Image and Video Processing:
From Research to Reality. Synthesis Lectures on Image, Video, and Multimedia
Processing. Morgan & Claypool Publishers, 2006. (Cited on page 32.)

[131] A. Keller. Quasi-Monte Carlo Radiosity. In Proceedings of the eurograph-
ics workshop on Rendering techniques ’96, pages 101–110, London, UK, 1996.
Springer-Verlag. ISBN 3-211-82883-4. (Cited on page 59.)

[132] A. Keller. Instant Radiosity. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’97, pages 49–56, New
York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. ISBN
0-89791-896-7. (Cited on pages 15, 20, 59, and 109.)

[133] A. Keller. Quasi-Monte Carlo Methods for Realistic Image Synthesis. PhD thesis,
University of Kaiserslautern, Germany, 1998. (Cited on page 24.)

[134] A. Keller and W. Heidrich. Interleaved Sampling. In Proceedings of the 12th
Eurographics Workshop on Rendering Techniques, pages 269–276, London, UK,
2001. Springer-Verlag. ISBN 3-211-83709-4. (Cited on page 59.)

[135] A. Keller and C. Waechter. To Trace or Not To Trace, That is the Question.
Presentation for the Breakpoint 2005 demo party seminar, 2005. (Cited on
page 7.)

[136] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Architectures: a
Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002. ISBN 1-55860-286-0. (Cited on page 76.)

[137] A. Kensler. Tree Rotations for Improving Bounding Volume Hierarchies. In
Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing, pages 73–76,
Aug 2008. (Cited on page 31.)

[138] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens,
B. Towles, A. Chang, and S. Rixner. Imagine: Media Processing with Streams.
IEEE Micro, 21:35–46, 2001. ISSN 0272-1732. (Cited on page 97.)

[139] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29,
2008. URL http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf.
(Cited on page 97.)

179

http://www.realworldtech.com/page.cfm?ArticleID=RWT121410213827
http://www.realworldtech.com/page.cfm?ArticleID=RWT121410213827
http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[140] T. Kollig and A. Keller. Illumination in the Presence of Weak Singularities.
In Monte Carlo And Quasi-monte Carlo Methods, pages 245–257, 2004. (Cited
on page 60.)

[141] J. Křivánek, K. Bouatouch, S. Pattanaik, and J. Zara. Making Radiance and
Irradiance Caching Practical: Adaptive Caching and Neighbor Clamping. In
Rendering Techniques, pages 127–138. Eurographics Association, 2006. ISBN
3-905673-35-5. (Cited on page 55.)

[142] J. Křivánek, P. Gautron, G. Ward, H. W. Jensen, P. H. Christensen, and
E. Tabellion. Practical Global Illumination with Irradiance Caching. In ACM
SIGGRAPH 2008 classes, SIGGRAPH ’08, pages 60:1–60:20, New York, NY,
USA, 2008. ACM. (Cited on page 55.)

[143] E. Lafortune. Mathematical Models and Monte Carlo Algorithms for Physically
Based Rendering. PhD thesis, Katholieke Universiteit Leuven, 1996. (Cited on
pages 14, 17, and 97.)

[144] E. Lafortune and Y. Willems. Bidirectional Path Tracing. In Proc. 3rd In-
ternational Conference on Computational Graphics and Visualization Techniques
(Compugraphics), pages 145–153, 1993. (Cited on page 14.)

[145] S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila. Incremen-
tal Instant Radiosity for Real-Time Indirect Illumination. In Proceedings
of Eurographics Symposium on Rendering 2007, pages 277–286. Eurographics
Association, 2007. (Cited on page 60.)

[146] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast
BVH Construction on GPUs. Computer Graphics Forum, 28(2):375–384, 2009.
(Cited on pages 31 and 96.)

[147] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,
UK, 2006. Available at http://planning.cs.uiuc.edu/. (Cited on page 60.)

[148] J. Lehtinen, M. Zwicker, E. Turquin, J. Kontkanen, F. Durand, F. Sillion, and
T. Aila. A Meshless Hierarchical Representation for Light Transport. ACM
Trans. Graph., 27(3), 2008. (Cited on page 54.)

[149] D. Leubke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner.
Level of Detail for 3D Graphics. Elsevier Science, San Francisco, CA, USA, 2003.
ISBN 1-55860-838-9. (Cited on page 32.)

[150] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVidia Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro, 28:39–55, March
2008. ISSN 0272-1732. (Cited on page 98.)

180

[151] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. Turner.
Real-time, Continuous Level of Detail Rendering of Height Fields. In Pro-
ceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH’96), pages 109–118, August 1996. (Cited on page 32.)

[152] C. Lomont. Introduction to Intel Advanced Vector Extensions. Intel Software
Network, 2011. URL http://software.intel.com/en-us/avx/. (Cited on
page 77.)

[153] J. Lowensohn. How Epic Fit the Unreal Engine into the iPhone, 2010.
URL http://news.cnet.com/8301-27076_3-20000214-248.html. (Cited on
page 3.)

[154] Argonaut Software ltd. Starglider 2, 1988. URL http://www.starglider2.

com. (Cited on page 2.)

[155] J. D. MacDonald and K. S. Booth. Heuristics for Ray Tracing using Space
Subdivision. The Visual Computer, 6:153–166, 1990. ISSN 0178-2789. (Cited on
page 22.)

[156] E. Mansson, J. Munkberg, and T. Akenine-Möller. Deep Coherent Ray Tracing.
In Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, pages
79–85, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 978-1-4244-
1629-5. (Cited on page 78.)

[157] Microsoft. Microsoft DirectCompute, 2010. URL http://msdn.microsoft.

com/directx. (Cited on page 97.)

[158] J. G. Miner, D. Dean, J. C. Decuir, R. H. Nicholson, and A. Tanaka. Personal
Computer Apparatus for Block Transfer of Bit-Mapped Image Data. US
Patent 4,874,164, 1999. (Cited on page 3.)

[159] M. Mittring. Finding Next Gen: CryEngine 2. In SIGGRAPH ’07: ACM
SIGGRAPH 2007 courses, pages 97–121, New York, NY, USA, 2007. ACM.
(Cited on page 4.)

[160] S. Miyamoto. Super Mario 64. Published by Nintendo, 1996. (Cited on
page 54.)

[161] S. Miyamoto. Super Mario Galaxy. Published by Nintendo, 2007. (Cited on
pages 4 and 122.)

[162] G. E. Moore. Cramming More Components onto Integrated Circuits. Elec-
tronics, 38(8), April 1965. (Cited on page 123.)

[163] M. J. Muuss. RT & REMRT: Shared Memory Parallel and Network Distributed
Ray-Tracing Programs. In USENIX: Proceedings of the Fourth Computer Graphics
Workshop, pages 86–97, October 1987. (Cited on page 44.)

181

http://software.intel.com/en-us/avx/
http://news.cnet.com/8301-27076_3-20000214-248.html
http://www.starglider2.com
http://www.starglider2.com
http://msdn.microsoft.com/directx
http://msdn.microsoft.com/directx

[164] M. J. Muuss. Towards Real-Time Ray-Tracing of Combinatorial Solid Ge-
ometric Models. In Proceedings of BRL-CAD Symposium, 1995. (Cited on
page 6.)

[165] B. Nam and A. Sussman. A Comparative Study of Spatial Indexing Tech-
niques for Multidimensional Scientific Datasets. In SSDBM ’04: Proceedings of
the 16th International Conference on Scientific and Statistical Database Manage-
ment, page 171, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2146-0. (Cited on page 23.)

[166] Namco. Galaxian, 1979. URL http://www.galaxian.com. (Cited on page 2.)

[167] Namco. Pole Position, 1982. URL http://www.namco.com. (Cited on page 2.)

[168] P. A. Navratil, D. S. Fussell, C. Lin, and W. R. Mark. Dynamic Ray Scheduling
to Improve Ray Coherence and Bandwidth Utilization. In Proceedings of the
2007 IEEE Symposium on Interactive Ray Tracing, pages 95–104, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 978-1-4244-1629-5. (Cited on
page 79.)

[169] G. Newell and J. Weier. Portal 2. Valve Corporation, 2011. (Cited on page 132.)

[170] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.
ISBN 0-89871-295-5. (Cited on pages 15 and 60.)

[171] J. Novák, V. Havran, and C. Daschbacher. Path Regeneration for Interactive
Path Tracing. In The European Association for Computer Graphics 28th Annual
Conference: EUROGRAPHICS 2007, short papers, pages 61–64. The European
Association for Computer Graphics, 2010. (Cited on pages 7, 97, 106, and 124.)

[172] NVidia. NVidia NV1, 1995. URL http://www.nvidia.com. (Cited on pages 2

and 3.)

[173] nVIDIA. GeForce 256, 1999. URL http://www.nvidia.com/page/geforce256.

html. (Cited on page 3.)

[174] NVidia. Fermi: NVidia’s Next Generation CUDA Compute Architecture,
2009. URL http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf. (Cited on page 97.)

[175] NVidia. Design Garage, 2010. URL http://www.nvidia.com. (Cited on
pages 97 and 124.)

[176] M. Olano, B. Kuehne, and M. Simmons. Automatic Shader Level of De-
tail. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, HWWS ’03, pages 7–14, Aire-la-Ville, Switzerland, 2003.
Eurographics Association. ISBN 1-58113-739-7. (Cited on page 32.)

182

http://www.galaxian.com
http://www.namco.com
http://www.nvidia.com
http://www.nvidia.com/page/geforce256.html
http://www.nvidia.com/page/geforce256.html
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com

[177] J. A. Oudshoorn. Ray Tracing as the Future of Computer Games. PhD thesis,
Department of Computer Science, University of Utrecht, 1999. (Cited on
pages 7 and 37.)

[178] R. Overbeck, R. Ramamoorthi, and W. R. Mark. Large Ray Packets for Real-
time Whitted Ray Tracing. In IEEE/EG Symposium on Interactive Ray Tracing
(IRT), pages 41–48, Aug 2008. (Cited on pages 78, 80, 83, 96, and 122.)

[179] J. Owens. Streaming Architectures and Technology Trends. GPU Gems 2,
2005. (Cited on page 123.)

[180] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krï¿œger, A. Lefohn,
and T. J. Purcell. A Survey of General-Purpose Computation on Graphics
Hardware. Computer Graphics Forum, 26(1):80–113, 2007. (Cited on page 95.)

[181] A. Pajot, L. Barthe, M. Paulin, and P. Poulin. Combinatorial Bidirectional
Path-Tracing for Efficient Hybrid CPU/GPU Rendering. Computer Graphics
Forum, 30(2):315–324, April 2011. (Cited on page 97.)

[182] J. Pantaleoni and D. Luebke. HLBVH - Hierarchical LBVH Construction for
Real-Time Ray Tracing of Dynamic Geometry. Proceedings of HPG 2010, pages
87–95, 2010. (Cited on pages 31 and 142.)

[183] E. Paquette, P. Poulin, and G. Drettakis. A Light Hierarchy for Fast Rendering
of Scenes with Many Lights. In Computer Graphics Forum (Proceedings of the
Eurographics conference), pages 63–74. Eurographics, Sep 1998. (Cited on
page 60.)

[184] S. Parker, W. Martin, P. P. J. Sloan, P. Shirley, B. Smits, and C. Hansen.
Interactive Ray Tracing. In I3D ’99: Proceedings of the 1999 symposium on
Interactive 3D graphics, pages 119–126, New York, NY, USA, 1999. ACM. ISBN
1-58113-082-1. (Cited on pages 6, 31, and 75.)

[185] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberockand D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich. OptiX: a
General Purpose Ray Tracing Engine. ACM Trans. Graph., 29(4):66:1–66:13,
July 2010. ISSN 0730-0301. (Cited on pages 6 and 97.)

[186] W. J. Paul, P. Bach, M. Bosch, J. Fischer, C. Lichtenau, and J. Röhrig. Real
PRAM Programming. In Proceedings of the 8th International Euro-Par Confer-
ence on Parallel Processing, Euro-Par ’02, pages 522–531, London, UK, 2002.
Springer-Verlag. ISBN 3-540-44049-6. (Cited on page 78.)

[187] M. Pharr and G. Humphreys. Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004. ISBN 012553180X. (Cited on page 109.)

183

[188] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering Complex
Scenes with Memory-coherent Ray Tracing. In SIGGRAPH ’97: Proceedings of
the 24th annual conference on Computer graphics and interactive techniques, pages
101–108, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing
Co. ISBN 0-89791-896-7. (Cited on pages 75, 79, and 84.)

[189] B. T. Phong. Illumination for Computer Generated Pictures. Commun. ACM,
18(6):311–317, June 1975. ISSN 0001-0782. (Cited on pages 11 and 45.)

[190] PhotonStudios. Let There Be Light, 2008. (Cited on page 123.)

[191] J. Pineda. A Parallel Algorithm for Polygon Rasterization. In Proceedings
of the 15th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’88, pages 17–20, New York, NY, USA, 1988. ACM. ISBN 0-89791-
275-6. (Cited on page 13.)

[192] D. Pohl. Ray Tracing and Gaming - Quake 4: Ray Traced Project.
http://pcper.com, 2007. (Cited on page 7.)

[193] D. Pohl. Ray Tracing and Gaming - One Year Later. PC Perspective, 0, 2008.
(Cited on page 37.)

[194] D. Pohl. Light It Up! Quake Wars Gets Ray Traced. Visual Adrenaline, (2):
34–39, 2009. (Cited on page 7.)

[195] D. Pohl. Experimental Cloud-based Ray Tracing Using Intel MIC Architecture
for Highly Parallel Visual Processing. Intel Software Network, February 2011.
(Cited on page 7.)

[196] S. Popov, J. Günther, H. P. Seidel, and P. Slusallek. Stackless KD-Tree Traversal
for High Performance GPU Ray Tracing. Computer Graphics Forum, 26(3):
415–424, September 2007. (Proceedings of Eurographics). (Cited on pages 7

and 96.)

[197] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray Tracing on Pro-
grammable Graphics Hardware. ACM Transactions on Graphics, 21(3):703–712,
July 2002. ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002). (Cited
on pages 6, 96, and 122.)

[198] G. Ramanarayanan, J. Ferwerda, B. Walter, and K. Bala. Visual Equivalence:
Towards a New Standard for Image Fidelity. ACM Trans. Graph., 26, July
2007. ISSN 0730-0301. (Cited on page 4.)

[199] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering Antialiased Shadows
with Depth Maps. In Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’87, pages 283–291, New York,
NY, USA, 1987. ACM. ISBN 0-89791-227-6. (Cited on page 54.)

184

[200] Refractive. Octane Renderer, 2010. URL www.refractivesoftware.com.
(Cited on pages 97 and 124.)

[201] E. Reinhard and F. W. Jansen. Rendering Large Scenes using Parallel Ray
Tracing. Parallel Computer, 23:873–885, July 1997. ISSN 0167-8191. (Cited on
page 78.)

[202] A. Reshetov. Faster Ray Packets - Triangle Intersection through Vertex Culling.
In RT ’07: Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing,
pages 105–112, Washington, DC, USA, 2007. IEEE Computer Society. ISBN
978-1-4244-1629-5. (Cited on pages 26, 31, and 78.)

[203] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level Ray Tracing Algorithm.
In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 1176–1185, New York,
NY, USA, 2005. ACM. (Cited on page 6.)

[204] A. Reshetov, A. Soupikov, and W. R. Mark. Consistent Normal Interpolation.
In ACM SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA ’10, pages 142:1–
142:8, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0439-9. (Cited on
page 6.)

[205] S. M. Rubin and T. Whitted. A 3-Dimensional Representation for Fast
Rendering of Complex Scenes. In SIGGRAPH ’80: Proceedings of the 7th annual
conference on Computer graphics and interactive techniques, pages 110–116, New
York, NY, USA, 1980. ACM. ISBN 0-89791-021-4. (Cited on pages 21 and 23.)

[206] I. Sadeghi, B. Chen, and H. W. Jensen. Coherent Path Tracing. Journal of
Graphics, GPU, and Game Tools, 14(2):33–43, 2009. (Cited on page 124.)

[207] J. Schmittler, I. Wald, and P. Slusallek. SaarCOR: a Hardware Architecture for
Ray Tracing. In HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS conference on Graphics hardware, pages 27–36, Aire-la-Ville, Switzerland,
2002. Eurographics Association. ISBN 1-58113-580-7. (Cited on pages 7

and 78.)

[208] J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and P. Slusallek. Realtime Ray
Tracing of Dynamic Scenes on an FPGA Chip. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS ’04,
pages 95–106, New York, NY, USA, 2004. ACM. ISBN 3-905673-15-0. (Cited
on page 7.)

[209] J. Schmittler, D. Pohl, T. Dahmen, C. Vogelgesang, and P. Slusallek. Realtime
Ray Tracing for Current and Future Games. In ACM SIGGRAPH 2005 Courses,
SIGGRAPH ’05, New York, NY, USA, 2005. ACM. (Cited on pages 7 and 49.)

[210] K. Schwenk, A. Kuijper, J. Behr, and D. Fellner. Practical Noise Reduction for
Progressive Stochastic Ray Tracing with Perceptual Control. IEEE Computer

185

www.refractivesoftware.com

Graphics and Applications, 99(PrePrints), 2012. ISSN 0272-1716. (Cited on
page 143.)

[211] Sega. Turbo, 1981. URL http://www.sega.com. (Cited on page 2.)

[212] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan. Larrabee: a Many-Core x86 Architecture for Visual Computing.
In ACM SIGGRAPH 2008 papers, pages 18:1–18:15, New York, NY, USA, 2008.
ACM. ISBN 978-1-4503-0112-1. (Cited on page 77.)

[213] D. Shephard. A Two-Dimensional Interpolation Function for Irregularly-
Spaced Data. In Proceedings of the 1968 23rd ACM national conference, pages
517–524, New York, NY,USA, 1968. ACM. (Cited on page 67.)

[214] P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo Techniques for Direct
Lighting Calculations. ACM Trans. Graph., 15:1–36, January 1996. ISSN
0730-0301. (Cited on page 60.)

[215] F. X. Sillion and C. Puech. Radiosity and Global Illumination. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1994. ISBN 1558602771. (Cited on
page 14.)

[216] S. Siltanen and T. Lokki. Diffraction Modeling in Acoustic Radiance Transfer
Method. Acoustical Society of America Journal, 123(5):3759, 2008. ISSN 1520-
8524. (Cited on page 10.)

[217] S. Siltanen, T. Lokki, S. Kiminki, and L. Savioja. The Room Acoustic Ren-
dering Equation. Journal of the Acoustical Society of America, 122(3):1624–1635,
2007. (Cited on page 10.)

[218] S. Simha. Super Mario Chip - Inside the 64-bit RISC Processor that Powers
the New Nintendo Game Machine. j-BYTE, 21(12):59–65, dec 1996. ISSN
0360-5280. (Cited on page 54.)

[219] T. Simon. Tom Clancy’s H.A.W.X., 2009. (Cited on page 122.)

[220] P. P. Sloan, J. Kautz, and J. Snyder. Precomputed Radiance Transfer for
Real-time Rendering in Dynamic, Low-Frequency Lighting Environments.
In Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’02, pages 527–536, New York, NY, USA, 2002. ACM.
ISBN 1-58113-521-1. (Cited on page 54.)

[221] P. Slusallek and I. Georgiev. RTfact: Generic Concepts for Flexible and High
Performance Ray Tracing. In R. J. Trew, editor, Proceedings of the IEEE / EG
Symposium on Interactive Ray Tracing 2008, pages 115–122, Marina del Rey, CA,
USA, 2008. IEEE Computer Society, Eurographics Association, IEEE. (Cited
on page 6.)

186

http://www.sega.com

[222] A. Smith, J. Skorupski, and J. Davis. Transient Rendering. Technical Report
UCSC-SOE-08-26, School of Engineering, University of California, Santa
Cruz, February 2008. (Cited on page 10.)

[223] B. Smits, J. Arvo, and D. P. Greenberg. A Clustering Algorithm for Radiosity
in Complex Environments. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’94, pages 435–442,
New York, NY, USA, 1994. ACM. ISBN 0-89791-667-0. (Cited on page 14.)

[224] M. Stamminger. Finite Element Methods for Global Illumination Computations.
Herbert Utz Verlag, 1999. ISBN 3896756613. (Cited on page 14.)

[225] A. Stephens, S. Boulos, J. Bigler, I. Wald, and S. G. Parker. An Application of
Scalable Massive Model Interaction using Shared-Memory Systems. In Alan
Heirich, Bruno Raffin, and Luís Paulo Peixoto dos Santos, editors, EGPGV,
pages 19–26. Eurographics Association, 2006. ISBN 3-905673-40-1. (Cited on
page 6.)

[226] M. Stich, H. Friedrich, and A. Dietrich. Spatial Splits in Bounding Volume
Hierarchies. In HPG ’09: Proceedings of the Conference on High Performance
Graphics 2009, pages 7–13, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-603-8. (Cited on pages 23, 31, and 40.)

[227] J. Sugerman, T. Foley, S. Yoshioka, and P. Hanrahan. Ray Tracing on a CELL
Processor with Software Caching. Poster at The 2006 IEEE Symposium on
Interactive Ray Tracing, 2006. (Cited on page 122.)

[228] K. Sung and P. Shirley. Ray Tracing with the BSP Tree. In Graphics Gems III,
pages 271–274. Academic Press, 1992. (Cited on pages 22 and 24.)

[229] T. Sweeney. Unreal Engine 3. http://www.unrealengine.com/platforms,
2009. (Cited on page 33.)

[230] T. Sweeny. Unreal Engine 3, 2008. (Cited on page 122.)

[231] László Szirmay-Kalos, György Antal, and Mateu Sbert. Go with the winners
strategy in path tracing. In WSCG (Journal Papers), pages 49–56, 2005. (Cited
on pages 15 and 109.)

[232] E. Tabellion. Irradiance Caching at DreamWorks. In ACM SIGGRAPH 2008
classes, SIGGRAPH ’08, pages 69:1–69:47, New York, NY, USA, 2008. ACM.
(Cited on page 55.)

[233] E. Tabellion and A. Lamorlette. An Approximate Global Illumination System
for Computer Generated Films. In ACM SIGGRAPH 2004 Papers, SIGGRAPH
’04, pages 469–476, New York, NY, USA, 2004. ACM. (Cited on page 59.)

[234] J. Talbot, D. Cline, and P. K. Egbert. Importance Resampling for Global
Illumination. In Rendering Techniques, pages 139–146, 2005. (Cited on page 17.)

187

[235] S. Thakkar and T. Huff. Intel Streaming SIMD Extensions. In IEEE Computer,
volume 32, pages 26–24, 1999. (Cited on pages 25 and 77.)

[236] D. Theurer. I, Robot, 1983. URL http://www.atari.com. (Cited on page 2.)

[237] J. A. Tsakok. Faster Incoherent Rays: Multi-BVH Ray Stream Tracing. In
HPG ’09: Proceedings of the Conference on High Performance Graphics 2009, pages
151–158, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-603-8. (Cited
on pages 28, 79, and 83.)

[238] D. van Antwerpen. Unbiased Physically Based Rendering on the GPU.
Master’s thesis, Technical University Delft, 2011. (Cited on pages 7 and 97.)

[239] D. van Antwerpen. Improving SIMD Efficiency for Parallel Monte Carlo Light
Transport on the GPU. In Proceedings of the Conference on High Performance
Graphics 2011, HPG ’11. ACM, 2011. (Cited on page 110.)

[240] M. van der Zwaan, E. Reinhard, and F. W. Jansen. Pyramid Clipping for
Efficient Ray Traversal. In Rendering Techniques’95, pages 1–10, 1995. (Cited
on pages 26 and 78.)

[241] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD
thesis, Stanford University, 1997. (Cited on pages 14, 17, 18, 97, and 109.)

[242] C. Wächter and A. Keller. Instant Ray Tracing: The Bounding Interval
Hierarchy. In Rendering Techniques, pages 139–149. Eurographics Association,
2006. ISBN 3-905673-35-5. (Cited on pages 23 and 31.)

[243] C. Waechter. Quasi-Monte Carlo Light Transport Simulation by Efficient Ray
Tracing. PhD thesis, University of Ulm, Germany, 2009. (Cited on page 14.)

[244] I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,
Saarland University, 2004. (Cited on pages 7, 37, 44, and 60.)

[245] I. Wald. On Fast Construction of SAH-based Bounding Volume Hierarchies.
In Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, pages
33–40, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 978-1-4244-
1629-5. (Cited on page 31.)

[246] I. Wald. Active Thread Compaction for GPU Path Tracing. In Proceedings of
the Conference on High Performance Graphics 2011, HPG ’11. ACM, 2011. (Cited
on page 97.)

[247] I. Wald and V. Havran. On Building Fast kD-trees for Ray Tracing, and on
Doing That in O(N log N). In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, pages 61–69, 2006. (Cited on page 22.)

188

http://www.atari.com

[248] I. Wald and P. Slusallek. State of the Art in Interactive Ray Tracing. In State
of the Art Reports, EUROGRAPHICS 2001, pages 21–42. EUROGRAPHICS,
Manchester, United Kingdom, 2001. (Cited on pages 6 and 122.)

[249] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Rendering with
Coherent Ray Tracing. Computer Graphics Forum, 20(3):153–165, 2001. (Cited
on pages 25, 64, 78, and 80.)

[250] I. Wald, C. Benthin, and P. Slusallek. OpenRT - A Flexible and Scalable
Rendering Engine for Interactive 3D Graphics. Technical report, Computer
Graphics Group, Saarland University, 2002. (Cited on page 6.)

[251] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek. Interactive Global
Illumination using Fast Ray Tracing. In Proceedings of the 13th EUROGRAPH-
ICS Workshop on Rendering. Saarland University, Kaiserslautern University,
2002. avail.at http://www.openrt.de. (Cited on page 60.)

[252] I. Wald, C. Benthin, and P. Slusallek. Interactive Global Illumination in
Complex and Highly Occluded Environments. In Proceedings of the 14th
Eurographics workshop on Rendering, EGRW ’03, pages 74–81, Aire-la-Ville,
Switzerland, 2003. Eurographics Association. ISBN 3-905673-03-7. (Cited on
page 60.)

[253] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray Tracing Animated
Scenes using Coherent Grid Traversal. ACM Transactions on Graphics, 25(3):
485–493, 2006. ISSN 0730-0301. (Cited on pages 31 and 78.)

[254] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies. ACM Trans. Graph., 26(1), January
2007. ISSN 0730-0301. (Cited on pages 26, 31, 42, and 78.)

[255] I. Wald, C. P. Gribble, S. Boulos, and A. Kensler. SIMD Ray Stream Tracing
- SIMD Ray Traversal with Generalized Ray Packets and On-the-fly Re-
Ordering. Technical Report UUSCI-2007-012, SCI Institute, university of
Utah, 2007. (Cited on page 79.)

[256] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker,
and P. Shirley. State of the Art in Ray Tracing Animated Scenes. In Dieter
Schmalstieg and Jiří Bittner, editors, STAR Proceedings of Eurographics 2007,
pages 89–116. The Eurographics Association, September 2007. (Cited on
page 31.)

[257] I. Wald, C. Benthin, and S. Boulos. Getting Rid of Packets: Efficient SIMD
Single-Ray Traversal using Multi-branching BVHs. In Symposium on Interactive
Ray Tracing 2008, pages 49–57. IEEE/Eurographics, 2008. (Cited on pages 23,
28, and 80.)

189

[258] B. Walter, G. Drettakis, and S. Parker. Interactive Rendering using the Render
Cache. In D. Lischinski and G.W. Larson, editors, Rendering techniques ’99
(Proceedings of the 10th Eurographics Workshop on Rendering), volume 10, pages
235–246, New York, NY, Jun 1999. Springer-Verlag/Wien. (Cited on pages 6

and 123.)

[259] B. Walter, G. Drettakis, and D. P. Greenberg. Enhancing and Optimizing
the Render Cache. In Proceedings of the 13th Eurographics workshop on Render-
ing, EGRW ’02, pages 37–42, Aire-la-Ville, Switzerland, 2002. Eurographics
Association. ISBN 1-58113-534-3. (Cited on page 6.)

[260] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. P. Greenberg.
Lightcuts: A Scalable Approach to Illumination. In ACM SIGGRAPH 2005
Papers, SIGGRAPH ’05, pages 1098–1107, New York, NY, USA, 2005. ACM.
(Cited on page 60.)

[261] B. Walter, A. Arbree, K. Bala, and D. P. Greenberg. Multidimensional Light-
cuts. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages 1081–1088, New
York, NY, USA, 2006. ACM. ISBN 1-59593-364-6. (Cited on page 60.)

[262] B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast Agglomerative Clustering
for Rendering. In IEEE Symposium on Interactive Ray Tracing (RT), pages 81–86,
August 2008. (Cited on pages 23, 31, 41, and 63.)

[263] G. Ward. Adaptive Shadow Testing for Ray Tracing. In Eurographics Workshop
on Rendering, pages 11–20, May 1991. (Cited on page 60.)

[264] G. J. Ward, F. M. Rubinstein, and R. D. Clear. A Ray Tracing Solution for
Diffuse Interreflection. In Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’88, pages 85–92, New York,
NY, USA, 1988. ACM. ISBN 0-89791-275-6. (Cited on pages 20, 53, and 54.)

[265] T. Whitted. An Improved Illumination Model for Shaded Display. Commun.
ACM, 23(6):343–349, 1980. (Cited on pages 5, 12, 21, and 37.)

[266] L. Williams. Casting Curved Shadows on Curved Surfaces. In Proceedings
of the 5th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’78, pages 270–274, New York, NY, USA, 1978. ACM. (Cited on
pages 4 and 54.)

[267] L. B. Wolff and D. J. Kurlander. Ray Tracing with Polarization Parameters.
IEEE Computer Graphics Applications, 10:44–55, November 1990. ISSN 0272-
1716. (Cited on page 11.)

[268] A. Woo, P. Poulin, and A. Fournier. A Survey of Shadow Algorithms. IEEE
Computer Graphics and Applications, 10(6):13–32, November 1990. ISSN 0272-
1716. (Cited on page 4.)

190

[269] S. Woop, J. Schmittler, and P. Slusallek. RPU: A Programmable Ray Processing
Unit for Realtime Ray Tracing. In Proceedings of ACM SIGGRAPH 2005, pages
434–444, July 2005. URL http://www.saarcor.de/. (Cited on page 7.)

[270] S. Woop, G. Marmitt, and P. Slusallek. B-KD trees for Hardware Accelerated
Ray Tracing of Dynamic Scenes. In Proceedings of the 21st ACM SIGGRAPH/EU-
ROGRAPHICS symposium on Graphics hardware, GH ’06, pages 67–77, New
York, NY, USA, 2006. ACM. ISBN 3-905673-37-1. (Cited on page 7.)

[271] J. C. Xia and A. Varshney. Dynamic View-dependent Simplification for
Polygonal Models. In Proceedings of the 7th conference on Visualization ’96, VIS
’96, pages 327–ff., Los Alamitos, CA, USA, 1996. ISBN 0-89791-864-9. (Cited
on page 32.)

[272] K. Yamauchi. Gran Tourismo Series, 1997. (Cited on page 122.)

[273] J.I. Yellot. Science, New Series. 221(4608):382–385, 1983. (Cited on page 56.)

[274] C. Yerli and R. Taylor. Crysis Chat with Cevat Yerli and Roy
Taylor, 2007. URL http://www.incrysis.com/index.php?option=com_

content&task=view&id=559. (Cited on page 3.)

[275] G. Zachmann. Minimal Hierarchical Collision Detection. In Proc. ACM
Symposium on Virtual Reality Software and Technology (VRST), pages 121–128,
Hong Kong, China, 2002. (Cited on page 23.)

[276] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-tree Construction
on Graphics Hardware. In SIGGRAPH Asia ’08: ACM SIGGRAPH Asia 2008
papers, pages 1–11, New York, NY, USA, 2008. ACM. (Cited on pages 6, 22,
31, 96, and 142.)

[277] S. Zhukov, A. Inoes, and G. Kronin. An Ambient Light Illumination Model.
In George Drettakis and Nelson Max, editors, Rendering Techniques ’98, Eu-
rographics, pages 45–56. Springer-Verlag Wien New York, 1998. (Cited on
pages 55 and 56.)

191

http://www.saarcor.de/
http://www.incrysis.com/index.php?option=com_content&task=view&id=559
http://www.incrysis.com/index.php?option=com_content&task=view&id=559

C U R R I C U L U M V I TA E

Jacobus (Jacco) Bikker

Geboren 8 maart 1973 te Barendrecht

Opleiding:

HIO (Hoger Informatica Onderwijs), Hogeschool Utrecht, 1988 - 1993.

H.A.V.O., Gereformeerde Scholengemeenschap “Guido de Brès” te Amersfoort,

1984 - 1988.

Beroepsuitoefening:

2010 - vandaag: NHTV University of Applied Sciences, Breda. Associate Professor

Entertainment Technology.

2007 - vandaag: NHTV University of Applied Sciences, Breda. Senior Lecturer and

Program Manager.

2006 - 2010: NHTV University of Applied Sciences, Breda. Development of the

IGAD Bachelor Program.

2005 - 2006: W!Games, Amsterdam. 3D Engine Specialist.

2002 - 2005: Overloaded PocketMedia, Amsterdam. Senior Game Developer.

1999 - 2002: Davilex Software, Houten. Research & Development of Real-time 3D

Technology.

1997 - 1999: Lost Boys Interactive, Amsterdam. Research & Development of Real-

time 3D Technology.

1993 - 1997: Unilever / Quest, Naarden. Software Engineer.

193

colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino and Euler type
faces (Type 1 PostScript fonts URW Palladio L and FPL were used). The listings are
typeset in Bera Mono, originally developed by Bitstream, Inc. as “Bitstream Vera”.
(Type 1 PostScript fonts were made available by Malte Rosenau and Ulrich Dirr.)

The typographic style was inspired by Bringhurst’s genius as presented in The Ele-
ments of Typographic Style [39]. It is available for LATEX via CTAN as “classicthesis”.

Final Version as of November 6, 2012 at 16:14.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

D E C L A R AT I O N

This thesis is a presentation of my original research work. Wherever contributions
of others are involved, every effort is made to indicate this clearly, with due
reference to the literature, and acknowledgement of collaborative research and
discussions. The work was done under the guidance of Professor F. W. Jansen.

Delft, September 2012

Jacco Bikker

	Abstract
	Samenvatting
	Publications
	Dissemination
	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	1.1 Graphics in Games
	1.2 Ray tracing versus Rasterization
	1.3 Previous work
	1.4 Problem Definition
	1.5 Thesis Overview

	2 Preliminaries
	2.1 A Brief Survey of Rendering Algorithms
	2.1.1 The Rendering Equation
	2.1.2 Rasterization-based Rendering
	2.1.3 Ray Tracing
	2.1.4 Physically-based Rendering
	2.1.5 Monte-Carlo Integration
	2.1.6 Russian Roulette
	2.1.7 Path Tracing and Light Tracing
	2.1.8 Efficiency Considerations
	2.1.9 Biased Rendering Methods

	2.2 Efficient Ray / Scene Intersection
	2.2.1 Acceleration Structures for Efficient Ray Tracing
	2.2.2 Acceleration Structure Traversal

	2.3 Optimizing Time to Image
	2.4 Definition of Real-time
	2.5 Overview of Thesis

	Real-time Ray Tracing
	3 Real-time Ray Tracing
	3.1 Context
	3.2 Acceleration Structure
	3.3 Ray Traversal Implementation
	3.4 Divergence
	3.5 Multi-threaded Rendering
	3.6 Shading Pipeline
	3.7 Many Lights
	3.8 Performance
	3.9 Discussion

	4 Sparse Sampling of Global Illumination
	4.1 Previous Work
	4.2 The Irradiance Cache
	4.3 Point Set
	4.3.1 Points on Sharp Edges
	4.3.2 Dart Throwing
	4.3.3 Discussion

	4.4 Shading the points
	4.4.1 Previous Work
	4.4.2 Algorithm Overview
	4.4.3 Constructing the Set of VPLs
	4.4.4 Shading using the Set of VPLs
	4.4.5 Precalculated Visibility
	4.4.6 The Lightcuts Algorithm
	4.4.7 Modifications to Lightcuts
	4.4.8 Reconstruction

	4.5 Results
	4.5.1 Conclusion

	4.6 Future Work
	4.6.1 Dynamic Meshes
	4.6.2 Point Set Construction

	4.7 Discussion

	Real-time Path Tracing
	5 CPU Path Tracing
	5.1 Data Locality in Ray Tracing
	5.2 Path Tracing and Data Locality
	5.2.1 SIMD Efficiency and Data Locality
	5.2.2 Previous work on Improving Data Locality in Ray Tracing
	5.2.3 Interactive Rendering
	5.2.4 Discussion

	5.3 Data-Parallel Ray Tracing
	5.3.1 Algorithm Overview
	5.3.2 Data structures
	5.3.3 Ray Traversal
	5.3.4 Efficiency Characteristics
	5.3.5 Memory Use
	5.3.6 Cache Use

	5.4 Results
	5.4.1 Performance

	5.5 Conclusion and Future Work

	6 GPU Path Tracing
	6.1 Previous Work
	6.1.1 GPU Ray / Scene Intersection
	6.1.2 GPU Path Tracing
	6.1.3 The CUDA Programming Model

	6.2 Efficiency Considerations on Streaming Processors
	6.2.1 Divergent Ray Traversal on the GPU
	6.2.2 Utilization and Path Tracing
	6.2.3 Relation between Utilization and Performance
	6.2.4 Discussion
	6.2.5 Test Scenes

	6.3 Improving GPU utilization
	6.3.1 Path Regeneration
	6.3.2 Deterministic Path Termination
	6.3.3 Streaming Path Tracing
	6.3.4 Results

	6.4 Improving Efficiency through Variance Reduction
	6.4.1 Resampled Importance Sampling
	6.4.2 Implementing RIS
	6.4.3 Multiple Importance Sampling
	6.4.4 Results

	6.5 Discussion

	7 The Brigade Renderer
	7.1 Background
	7.2 Previous work
	7.3 The Brigade System
	7.3.1 Functional Overview
	7.3.2 Rendering on a Heterogeneous System
	7.3.3 Workload Balancing
	7.3.4 Double-buffering Scene Data
	7.3.5 Converging
	7.3.6 CPU Single Ray Queries
	7.3.7 Dynamically Scaling Workload
	7.3.8 Discussion

	7.4 Applied
	7.4.1 Demo Project ``Reflect''
	7.4.2 Demo Project ``It's About Time''

	7.5 Discussion

	8 Conclusions and Future Work

	Appendix
	A Appendix
	A.1 Shading Reconstruction Implementation

	B Appendix
	B.1 Reference Path Tracer
	B.2 Path Restart
	B.3 Combined

	C Appendix
	C.1 MBVH/RS Traversal

	D Appendix
	D.1 GPU Path Tracer Data
	Bibliography
	Curriculum Vitae

	Colophon
	Declaration

