
Programming in C++ / FASTTRACK TUTORIALS

PART 12: “Classes”

Introduction

In this episode we will build on the code from episode 11. In case you need a starting
point, here is some code that will do for today:

#include "precomp.h"

Surface tiles("assets/nc2tiles.png");

Sprite tank(new Surface("assets/ctankbase.tga"), 16);

int px = 0, py = 0;

void Game::Init() {}

void Game::Shutdown() {}

char map[5][30] = {

 "kc kc kc kc kc kc kc kc kc kc",

 "kc fb fb fb kc kc kc kc kc kc",

 "kc fb fb fb fb fb kc kc kc kc",

 "kc lc lc fb fb fb kc kc kc kc",

 "kc kc kc lc lc lc kc kc kc kc" };

void DrawTile(int tx, int ty, Surface* screen, int x, int y)

{

 Pixel* src = tiles.GetBuffer() + 1 + tx * 33 + (1 + ty * 33) * 595;

 Pixel* dst = screen->GetBuffer() + x + y * 800;

 for(int i = 0; i < 32; i++, src += 595, dst += 800)

 for(int j = 0; j < 32; j++) dst[j] = src[j];

}

void Game::Tick(float deltaTime)

{

 screen->Clear(0);

 for(int y = 0; y < 5; y++) for(int x = 0; x < 10; x++)

 {

 int tx = map[y][x * 3] - 'a', ty = map[y][x * 3 + 1] - 'a';

 DrawTile(tx, ty, screen, x * 32, y * 32);

 }

 if (GetAsyncKeyState(VK_LEFT)) { px--; tank.SetFrame(12); }

 if (GetAsyncKeyState(VK_RIGHT)) { px++; tank.SetFrame(4); }

 if (GetAsyncKeyState(VK_UP)) { py--; tank.SetFrame(0); }

 if (GetAsyncKeyState(VK_DOWN)) { py++; tank.SetFrame(8); }

 tank.Draw(screen, px, py);

}

There are some problems with this code, and we will fix those problems using classes,
which allow us to encapsulate functionality.

Objects

Your game world consists of objects. Take the last episode: we have a player tank, a
backdrop (which consists of tiles), a screen that we draw to. Later on, we might want to
add bullets, enemies, more levels and so on. This is a list of things, not a list of

operations. You could actually argue that the most logical way to start thinking about
what a game will do is actually: what objects do I need? And, slightly more detailed: what
do these objects do? And what properties do these objects have?

Note that this is something you have already been using. Consider the default code in
the Tick function:

void Game::Tick(float deltaTime)

{

 // clear the graphics window

 screen->Clear(0);

 ...

}

When you open up game.h you will see that your game has a variable screen, which is

an object. The type of this object is ‘Surface’. In the default template code we are telling
this surface to do things: it’s asked to clear itself, and to print something. A surface can

do more: you can find out what by looking at surface.h, line 37. There you will see

that a surface can also Resize itself, amongst other things. A Surface also has some

properties: a width, a height, a bunch of Pixels, and some other things. The things that
the Surface can do are called methods. The properties of an object are called member
variables, or just properties.

Tank object

Let’s apply this in a more interesting way. In the previous tutorial, you added a player-
controlled tank, with collision detection, to a tile-based backdrop. In this tutorial, we’ll
make the tank move by itself, using three simple rules:

1. If the tank can move to the right, it will
2. If the tank cannot move the the right, it will:

a. Move up, if it is in the lower half of the screen;
b. Move down, if it is in the top half of the screen.

3. When the tank reaches the right side of the screen, it is respawned at the left
side.

The main object that we will be working on is a tank:

class Tank

{

public:

};

Put this code in game.cpp, right above Game::Init(). Once you have that in place,

you can create your tank:

Tank mytank;

So: you can now make variables of type Tank. The object does not yet have any

properties though, and it can’t do anything yet… Our particular tank will need to perform

one task: move. We want to draw it once every time Game::Tick is executed, so when

it moves, it should do one step. In terms of properties for our tank, there are a few
obvious ones: position (x and y), and orientation. Considering this, the tank class now
becomes:

class Tank

{

public:

 void Move();

 int x, y, rotation;

};

When we first create a tank, we need to set its x and y and rotation. Until now, you would

have done this in the Game::Init() function, but now there is a better way. It is called

a constructor, and it looks like this:

class Tank

{

public:

 Tank()

 {

 x = 0;

 y = 4 * 64;

 rotation = 0;

 }

 void Move();

 int x, y, rotation;

};

The good thing is that when you create your tank (by creating a variable of type Tank),

the constructor is executed. So, basically the constructor is the Init function of your class.
And, best of all, each class can have its own, and it’s executed automatically for you.

Tank behavior

Now that we have a tank (called mytank), we can use it. First of all, we can access its

properties: mytank.x, mytank.y and mytank.rotation. We can also make it do

something. Add the following line to your Game::Tick function:

mytank.Move();

When you compile the program, you will get an error: we told C++ that there exists a

tank, and that it can be told to Move(), but we didn’t specify what happens in that case.

Let’s fix that. In the tank class, replace void Move(); by:

void Move()

{

 x++;

 if (x > 800) x = 0;

 tank.Draw(screen, x, y);

}

Note that this does not implement all the rules specified earlier, we’ll safe that for the
assignment.  When you try to compile this code, you will get an error. The above code

assumes that screen can be used in our tank class, but apparently it can not… There is

a reason for that: screen belongs to another object, which is called Game, and we can’t

just access it. Even though this is annoying right now, this is actually good: member
variables belong to their own object. This allows us to use x and y in a tank class, and x
and y in a bullet class as well: the tank x and y will be referred to (in our program) as

mytank.x and mytank.y; x for a bullet might be mightybullet.x. And, if there are

multiple bullets, they all have their own x and y: bullet1.x, bullet2.x, and so on.

That doesn’t solve the surface problem, obviously. Lucikly, the solution is not hard. The

game does know about screen, and the game moves the tank. So, the game should tell

the tank about the Surface as well. Like this:

mytank.Move(screen);

And, the tank should listen to that:

void Move(Surface* gameScreen)

{

 x++;

 if (x > (16 * 64)) x = 0;

 tank.Draw(gameScreen, x, y);

}

Note that it’s not called screen anymore, because it is a different variable now: it’s a

function argument. This time, all is well, and the tank does its limited behavior, which you
get to fix in the assignment.

Conclusion

A few final words before you start hacking away:

You have been using classes without knowing. There is a class Game, a Surface, and

a Sprite. The template has some more objects, which you didn’t use yet. Having a

class means nothing by the way; you merely tell C++ what something looks like. To

actually create something, you create a variable of that type, such as mytank. This

variable is called an instance. Each instance has its own set of member variables, as
defined in the class definition.

You use classes for many reasons:

 It allows you to think in high-level concepts before you get to the details;
 It groups data on a per-object basis rather than in one big messy pool;
 It groups data and the code that operates on that data.

We will dive deeper in the subject at a later time.

For now, you know enough for the…

Assignment

BASIC:

1. Correctly implement the three rules for the tank object, using the collision code
and full-screen map from episode 11.

2. Make an array of tanks. Each tank starts at a random tile, and executes the same

rules.

INTERMEDIATE:

3. Expand task 2 so that no two tanks start at the same tile.

4. Move the tank class to its own set of files: a tank.h for the class definition, and

a class.cpp for the implementation of the functions. Add tank.h to precomp.h

to make it accessible from game.cpp.

HARD:

5. Expand task 3 so that no two tanks occupy the same tile while walking the scene.
In other words: thanks should detect each other and avoid collisions.

6. Make a class for the tile map rendering code so that you can separate its data
(tiles, width, height, …) and functionality (draw, collisions, …) from the game
code. This will also allow you to easily reuse the code in another project.

END OF PART 12

Next part: “Data Structures”

