
Programming in C++ / FASTTRACK TUTORIALS

PART 10: “Arrays”
Introduction

In previous episodes we generally worked with one object at a time: one ball, one grain
of sand, and so on. In practice, we will generally want several of these. So, to store the
locations of two balls, we could type:

int ballx1 = …, bally1 = …;
int ballx2 = …, bally2 = …;

Obviously, this quickly gets annoying. This is where arrays come in handy:

int ballx[2], bally[2];

Now, variable ballx doesn’t contain a single integer, but two; and even better: we can
replace ‘2’ by pretty much any number we want.

Let’s give this a try. Copy the following code into a fresh template:

#include "precomp.h"

int x[4096], y[4096];

void Game::Init()

{

for(int i = 0; i < 4096; i++)

 x[i] = IRand(800), y[i] = IRand(512);

}

void Game::Shutdown() {}

void Game::Tick(float deltaTime)

{

 screen->Clear(0);

 for(int i = 0; i < 4096; i++)

 x[i] = (x[i] + 800 + (((i & 1) * 2) - 1)) % 800,

 y[i] = (y[i] + 512 + ((((i >> 2) & 1) * 2) - 1)) & 511,

 screen->GetBuffer()[x[i] + y[i] * 800] = 0xffffff;

}

This probably requires some explanation.  First, the arrays: two arrays are allocated to
store x and y coordinates. There is room for 4096 integers in each array. This is not a
random choice: 4096 is 212, so actually (for a computer) a nice round number. The

arrays are filled with random numbers in the Init function. A simple template function is

used for this; check it out in template.h. To keep the code brief I used a trick here: a

comma links the two variable assignments, which is perfectly fine in C++, and
sometimes very handy, e.g. in

for(int i = 0, j = 0, k = 0; i < 10; i++, j++, k++)

In the above code, it simply allows us to skip the curly brackets, which are not needed

for a for-loop that executes a single ‘instruction’, reducing Init to just two lines.

The magic is happening in Tick however.

Each of the 4096 particles moves, but always diagonally:

 half the particles go left, half go right;
 half the particles go up, half go down.

The decision for movement direction is made based on the index of the particle.
Specifically: ‘even’ particles go left, ‘uneven’ particles go right. This is done using
bitmasking (which we used for colors before). ‘Even’ particles are numbered 0, 2, 4, …;
these numbers have in common that their first bit is set to 0. For uneven particles, the
first bit is 1. So, we take this bit, multiply it by 2 (to get 0 or 2), and subtract 1 (to get -1 or
1). This value is then added to the x-coordinate of the particle. To modify y, the same
trick is applied, but using a different bit of the index.

Finally, we need to make sure that the particles stay on the screen. A modulo (‘%’) is
used for this. I am never sure how ‘%’ behaves with negative numbers, so the screen
width is simply added to the current coordinate, and then the % is used. This solves off-
screen problems on the left and the right, using a single operation.

After this, commas are used to save on curly brackets, and a pixel is plotted by directly
accessing the pixel buffer.

Smooth

This runs pretty smooth. But how smooth exactly? Try this: start FRAPS, and increase
the particle count until the frame rate drops below 60.

There’s a slight problem with that request: the number 4096 appears four times in the
code. To ease the pain, add a #define at the top of the code:

#define PARTICLES 4096

Now, instead of typing 4096 you can type PARTICLES, and changing the count is much

easier. The #define is a macro: C++ will replace each occurrence with the specified

value. Just imagine the mayhem when you start using this to obfuscate code…

Smoother

Let’s try another program:

#include "precomp.h"

float x = 400, y = 256;

void Game::Init() {}

void Game::Shutdown() {}

void Game::Tick(float deltaTime)

{

 screen->Clear(0);

 screen->Line(mousex, 0, mousex, 511, 0xff0000);

 screen->Line(0, mousey, 799, mousey, 0xff0000);

}

This also requires some changes in game.h:

 Replace the MouseMove function by:
void MouseMove(int x, int y) { mousex = x, mousey = y; }

 Add two variables at the end of the class definition:
int mousex, mousey;

When you start the program you will notice there is a bug in the template: the lines do

not actually follow your mouse. You can fix this in template.cpp, line 312: replace xrel

by x, and yrel by y. Now you have some crosshairs that follow the mouse.

Let’s have some fun with the mouse. Add these lines at the end of the Tick function:

float dx = x - mousex, dy = y - mousey;

float dist = sqrtf(dx * dx + dy * dy);

if (dist < 50) x += dx / dist, y += dy / dist;

screen->Plot((int)x, (int)y, 0xffffff);

Now we have a pesky white dot that is afraid of the mouse.

Silky Smooth

The white dot has floating point coordinates, but when we plot it, it is plotted to an
integer position. That’s only logical: it cannot move by less than a pixel at a time. Or can
it? - Let’s zoom in on a pixel moving from the left to the right:

..And now, let’s make it move smoother:

The two images may not be entirely convincing, but what we apply here is the
fundamental principle of anti-aliasing: when a 1x1 pixel is located at a coordinate that is
not an integer, it essentially ‘overlaps’ multiple pixels. It thus contributes to the color of
multiple pixels, which our eyes in turn interpret as sub-pixel movement. Here’s an anti-
aliased line to make the effect more visible:

Smootherder

A final trick to make things move even smoother
requires a closer look at computer screens:

As you know, a white pixel is obtained by setting
red, green and blue to their maximum values. But,
what if we set green, blue and red instead? On a
screen that uses the three color components in the
layout shown above, we can move a white pixel by
one third of a pixel… This is the core idea behind
the ClearType technology.

Assignment

PART 1 – REGULAR:

This episode started with a discussion of arrays. Make the mouse-evading pixel into a
pixel plague: add a large amount of pixels, all exhibiting the same annoying behavior.

PART 2 – HARD:

You probably noticed that there is no code in this episode to make the pixel move at the
sub-pixel level. That is because this is your second assignment for today. Some hints:

 A pixel located at position x, y affects pixels (x,y), (x+1,y), (x,y+1) and (x+1,y+1).
 The brightness of each of these four pixels is proportional to the area of overlap.
 The sum of these areas is 1.

Also notice that a single pixel may be affected by multiple particles. This means that the
brightness you want to write to a pixel should actually be added to it. You can find a

useful function for this in surface.h: function AddBlend takes two Pixel colors and

returns the summed color.

END OF PART 10

Next part: “Tiles”

