
Programming in C++ / FASTTRACK TUTORIALS

PART 8: “Addresses”

Introduction

One of the harder concepts in C++ is the concept of pointers. Pointers have everything
to do with the very nature of the language: C++ gets you pretty close to the hardware
you are working with, and one of the most important parts of that hardware is memory.
Your system probably has a few ‘gigabytes’ of it, which roughly corresponds to a couple
of billion bytes:

1Kb = 1024 bytes,
1Mb = 1024 Kilobytes,
1Gb = 1024 Megabytes,
1Tb = 1024 Gigabytes,

…and so on. Note that 1024 is used rather than 1000, because 1024 is a power of 2 (210
in fact), and 1000 isn’t. So, 1Gb of memory means that you can store about 1 billion
unique values, or more precisely: 230 unique values. Those values are numbered, and
their location in the endless row of values is called an address. And, if you know at which
address something is stored in memory, you can point to it.

Back to the screen

Load up a fresh template project. Have a look at the function void Surface::Bar(int x1,
int y1, int x2, int y2, Pixel c) in surface.cpp:

void Surface::Bar(int x1, int y1, int x2, int y2, Pixel c)

{

 Pixel* a = x1 + y1 * m_Pitch + m_Buffer;

 for (int y = y1; y <= y2; y++)

 {

 for (int x = 0; x <= (x2 - x1); x++) a[x] = c;

 a += m_Pitch;

 }

}

This function draws a bar. At the first line of this function, a pointer is created (denoted

by the ‘*’). Once that line is executed, pointer a will contain the address of the first pixel

of the bar. Then the function proceeds with drawing the actual pixels: it loops over the

lines that contain the bar (y1 to y2), and then over the rows that contain the bar (x1 to

x2). However, it does not use the Plot function: instead, it writes directly to the memory

that contains the screen pixels.

So, let’s do some experiments. Copy the following Tick function:

void Game::Tick(float deltaTime)

{

 Pixel* address = screen->GetBuffer();

 for (int i = 0; i < 307200; i++) address[i] = i;

}

This code gets the address of the screen surface in memory, and stores it in a pointer
variable. Then, it uses a single for-loop to fill (most of) the screen. Now try this code:

void Game::Tick(float deltaTime)

{

 Pixel* address = screen->GetBuffer() + 100;

 for (int i = 0; i < 255; i++) address[i * 800] = i;

}

This gets us a vertical line. This shows something important:

The lines of your screen may appear separate, but they are not: in memory, your screen
is one continuous line, consisting of 800 * 512 pixels. That means that you should look
800 pixels further to get to the next line. Which is exactly what above code does. This
also explains why printing text too close to the right edge of your window makes it wrap
to the left side: there is no right edge.

Variables in memory

Let’s leave the screen pixels for a moment. Copy the following Tick function:

void Game::Tick(float deltaTime)

{

 int a = 100;

 int b = 200;

 int* c = &a;

 *c = 300;

 int w = 0;

}

Put a breakpoint on the third line (int* c = &a;), and run the code. Your program will

stop right before it executes that line. Now, open a ‘watch’ window, and inspect the
following values:

a (should be 100 of course);

&a (will be some 0x00abcd01 number).

The ‘&’ sign, when attached to a variable name, gives you the address of a variable. So

in this case, a is stored somewhere in memory, and now you know exactly where.

The same symbol is used in the third line of the code. Here we create a pointer (notice

the ‘*’ symbol), which points to a. So there is a fundamental difference between variable

a and c: a is an integer, but c is a pointer to an integer, i.e., it contains the address of

something that is supposed to be an integer.

But… Why!?

So why are pointers so important in C++? The reason is: performance. When you plot a

pixel at coordinate (x, y), in the end all that matters is that some value at some memory

location changes. That’s a simple operation, in principle. But when you only have x and

y, you need to calculate that address: it’s on line y, so at least 800 * y pixels past the

start of the screen start in memory. Add x to that to get the correct address. O, and don’t

forget the address of the screen itself. So the formula is: screen->GetBuffer() + x

+ y * 800. At that point you just have the address, so you still need to plot. That’s an

awful lot of work for a single pixel. If you know the address, all you need to do is put a
value right there. Pointers give you low-level control over memory. This gives you fine
control over the work that is carried out, and this in turn gives you raw performance (and
thus, speedy games).

Assignment

Here’s your task for today:

1. Draw a dotted line (skip every other dot) from (0, 0) to (400, 400). Do not use the
Plot function, use a pointer variable instead. Figure out what the distance
between dots in memory is to make this code super simple and fast.

2. Create an application that does the following:
a. Load an 800x512 image
b. Moves a white dot from the top-center (say, x = 400, y = 0) to the bottom.

While doing so, the dot evades obstacles.
c. When the pixel below the dot is black, it goes down. Otherwise, it goes

one pixel to the left if its y is an odd number, or the right if its y is an even
number.

d. When the pixel reaches the bottom of the screen, it returns to the top.
Make sure that the image that you use for step a is suitable for the other steps.
Also note that even though we’re moving a single pixel now, this will be an
avalanche soon. For this assignment, you need to use pointers: it’s also a
great way to read screen pixels rather than writing to them.

Once you have completed this assignment, you may continue with the next part.

END OF PART 8

Next part: “Colors”

