
Programming in C++ / FASTTRACK TUTORIALS

PART 4: “Sprites and Loops”

Introduction

This tutorial is about two things: sprites and loops. Sprites will get you on your way to
making interesting stuff move on the screen, whereas loops will help you write less code
to do more. On with the show!

Getting the stuff you need

As with the last tutorial, we’ll use the template again. Extract the package to a fresh

directory (say, c:\my_projects\loops) and load up the .sln file. Remove the ‘hello

world’ stuff in the Tick function.

Sprites

Let's see if we can draw something more interesting than a line this time. We'd like to
start drawing 2D game entities, like cars, people, and so on. These 2D game element
images are called 'Sprites', and here's how you use them in this framework:

Add a Sprite variable above the Tick function like this:

Sprite theSprite(new Surface("assets/ctankbase.tga"), 16);

void Game::Tick(float deltaTime)

{

 ...

This will create a variable that is a Sprite, from the ctankbase.tga image you can find

in the assets folder. Have a look at this TGA file with your favourite imageviewer.

Now make your Tick function like this:

void Game::Tick(float deltaTime)

{

 screen->Clear(0);

 theSprite.Draw(screen, 0, 0);

}

Run the program and look at the pretty tank!

Ok, so we can display an image, which is what a Sprite basically is. Except that sprites

are usually animated. If you haven't opened the assets/ctankbase.tga file in a good

imageviewer yet, do so now. You will see that it contains a row of similar tank images,
each one rotated a bit more so all possible directions of the tank are present in the big

image. But when we draw our tank in the Tick function, it only shows the first of the

rotated tanks! That is what the sprite class does for us, it keeps track of which one of the

frames to draw. We can tell the sprite to draw one of the other rotated tanks in the file
(i.e. another frame of the animation) if we want to.

Change the Tick function to make it look like this:

void Game::Tick(float deltaTime)

{

 screen->Clear(0);

 theSprite.SetFrame(6);

 theSprite.Draw(screen, 0, 0);

}

The tank is now rotated 45 degrees!
What we've done is that we told the sprite that its active or current frame is now 6. Each

next call to the Draw function will now draw the 6th frame of the sprite, which happens to

be the one in which the tank is rotated approximately 45 degrees.

Loops

I like the tank so much, I want to see more of them on the screen. Let's try this. Change

the Tick function to look like this:

void Game::Tick(float deltaTime)

{

 screen->Clear(0);

 theSprite.SetFrame(0);

 theSprite.Draw(screen, 0, 0);

 theSprite.SetFrame(1);

 theSprite.Draw(screen, 50, 0);

 theSprite.SetFrame(2);

 theSprite.Draw(screen, 100, 0);

 theSprite.SetFrame(3);

 theSprite.Draw(screen, 150, 0);

}

Four tanks in a row, and with different frames shown. Nice, but it's a lot of typing, or
copy-pasting. And what if we want to draw sixteen tanks in a row? That would become a
lot of work to produce a long list of very similar code.

Luckily, C++ has loops to do this. Try the following:

void Game::Tick(float deltaTime)

{

 screen->Clear(0);

 for(int i=0; i < 16; i++)

 {

 theSprite.SetFrame(i);

 theSprite.Draw(screen, i * 50, 0);

 }

}

!

Sixteen tanks in a row, with only five lines of code! And if the screen was wider, we could
have drawn more without making the code any bigger. Just change the number 16 on
the first line to change the number of tanks that are drawn.

But how does this work, I hear you ask. Well, let's analyze the code, line by line:

 for(int i=0; i < 16; i++)

This is the start of the loop, where you define what the loop will do and when it will stop.
It has three important parts, all separated by a semicolon ';'.

The first part is 'int i=0'. This means we are declaring a variable with the name i and it

will be a number, and its initial value will be 0.

We encountered this concept in the previous episode. Variables can be declared
at global scope (i.e., outside any function), in which case they will be available to
all functions in the current .cpp file. We can also declare them inside a function,
in which case they can be accessed in that function, but not outside it. And, we
can declare a variable inside a block marked by curly brackets. It will not be
available outside that block, and if the name of the variable overlaps with
variables outside the block, the newly declared variable takes precedence.

The for statement is a special case: the ‘int i’ used in the first line is not

declared inside the curly brackets, but it is in fact considered to be limited to the
scope of the loop. That means that variable i is not available outside the loop.

The second part is the condition that will be checked at the start of each loop. In our

case, that check is 'i < 16'. This means that, as long as i is smaller than 16, the code

below the for statement will run again and again and again.

The third and last part is what should happen at the end of the loop every time. In our

case, that is 'i++'. This is C++ shorthand for 'i = i + 1', and it means that, at the end of

each loop, we want to add one to i, or increment it by one.

What this means in practice is that we are going to run the code below the for

statement exactly 16 times: we start from zero, and add one for each time we loop as
long as we stay under 16. Once we reach 16, the loop stops, we skip over the code
below the for loop and continue with whatever comes after it.

Now let's look at the line below the for statement:

 {

Not much, is it? Just the open bracket. In C++, anything that's in between { and }, is

considered a code block, and it belongs together. In the case of the for loop, it means

that all the code below the for statement, encompassed by { and }, needs to be
executed as many times as the loop wants.

The next line then:

 theSprite.SetFrame(i);

You should recognize this line. It tells the sprite which animation frame is the active one.
Except that this time, we don't tell it 0 or 1 or 6 directly, but we use the variable i that we

defined in the for statement. Once the program runs, the actual value of i will be used.

This means that the first time it runs, frame 0 will be set. The second time, frame 1, the
third time, frame 2 and so on.

The line after that one looks like this:

 theSprite.Draw(screen, i * 50, 0);

Which is where we draw the sprite to the screen. This time, we are using i to change the
X coordinate of where we are going to draw the sprite. The sprite is around 50 pixels
wide (you can check this in an image viewer), so by multiplying i by 50, the first time
around, X will be 0*50=0, the second time it will be 1*50=50, the third time 2*50=100,
and so on.

The last line of the for block looks like this:

 }

Which does nothing more than close the code block that is going to be looped.

That's it, your first for loop! Note that you can put any kind of code inside the code block

that follows a for statement, including other for statements. Try doing the assignment

now, to find out why this could be useful.

Assignment

Here’s your task for today:

1. Create a nested for loop (a loop inside a loop) that draws 10 lines of 16 tanks

Once you have completed this assignment you are ready for the next part.

END OF PART 4

Next part: “Conditionals”

