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We present the Brigade renderer: an efficient system that uses the path tracing algorithm to produce images for real-time games.
We describe the architecture of the Brigade renderer, and provide implementation details. We describe two games that have been

created using Brigade.

1. Background

Historically, games have been an important driving force in
the advance of graphics hardware and rendering algorithms.
Effort has evolved from striving for abstract, visually pleasing
results, to more plausible realistic rendering. In the former,
a distinct visual style is chosen, which does not necessarily
require realism. Instead, over-the-top animation styles and
matching graphics are used. Examples of this approach are
most early 2D computer games, but there are also more
recent titles such as Super Mario Galaxy [1] and Okami [2]
(Figure 1).

Many modern games strive for realistic graphics, where
the goal is to convince the player that the result is (or
could be) realistic. Examples are racing games such as the
Gran Turismo series [3] and flight simulators such as Tom
Clancy’s H AWX. [4] (Figure 2), which use rasterization-
based renderers, augmented with various algorithms to add
secondary effects such as shadows, reflections, and indirect
illumination.

Recently, efforts are being made towards physically cor-
rect results. For static scenery and a static light configuration,
this can be achieved by precalculating global illumination,
or by coarsely calculating radiosity. Examples of this are
games based on the Unreal 3 engine [5] (Figure 3). Games
using the Frostbite 2 engine [6] support ray tracing of coarse
level geometry for glossy reflections. The Unreal 4 engine [7]

supports approximate global illumination using cone tracing
(8].

Physically based rendering of virtual worlds has strong
advantages. The obvious advantage is image fidelity
(Figure 4). Perhaps of equal importance, however, is pro-
duction efficiency. Whereas lighting for a scene in a
rasterization-based engine typically requires a designer to
work around technical limitations of the renderer to make
the lighting look right, physically based rendering naturally
leads to correct lighting. This limits the design effort to a
creative process alone.

Of the available physically based rendering algorithms,
stochastic ray-tracing based methods (path tracing and
derived methods) are favored over finite element methods,
due to their elegance and efficient handling of large scenes.
Unlike rasterization-based approaches, path tracing scales
up to photo realism with minimal algorithmic complexity:
the only dependencies are compute power and memory
bandwidth. Both increase over time. Moore’s law states that
the number of transistors that can be placed inexpensively
on an integrated circuit rises exponentially over time [9].
Although the link between transistor count and application
performance is complex, the latter follows the same pattern,
with compute power increasing at 71% per year on average,
and DRAM bandwidth at 25% per year [10].

Assuming that all other factors remain constant (e.g.,
scene complexity, screen resolution), it can thus be assumed
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FIGURE 1: Two examples of modern games that use a nonrealistic
visual style. (a) Super Mario Galaxy, (b) Okami.
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FIGURE 2: Two examples of modern games that aim for a high level
of realism. (a) Tom Clancy’s HAW.X,, (b) Gran Turismo 5.

that there will be a point where physically based rendering is
feasible on consumer hardware.

2. Previous Work

Recently, Whitted-style ray tracing and distribution ray
tracing have been shown to run in real-time, or at least
at interactive frame rates, on CPUs (see e.g., [12-15] and
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GPUs [16-19], as well as the streaming processors of modern
consoles [20, 21]).

Interactive path tracing was first mentioned in 1999 by
Walter et al. as a possible application of their Render Cache
system [22]. Using their system and a sixty-core machine,
a scene can be navigated at interactive frame rates. During
camera movement, samples are cached and reprojected to
construct an approximation for the new camera view point.
New samples are created for pixels with a relatively large error.
The image converges to the correct solution when the camera
is stationary.

Sadeghi et al. use ray packets for their path tracer [23].
Coherence between rays on the paths of block of pixels is
obtained by using the same random numbers for all pixels
in the block. This introduces structural noise but remains
unbiased. The system is CPU based and achieves about 1.2 M
rays per second per core of an Intel Core 2 Quad running at
2.83 Ghz.

In their 2009 paper, Aila and Laine evaluate the per-
formance of various ray traversal kernels on the GPU [19].
Although they did not aim to implement a full path tracer,
their measurements include a diffuse bounce, for which they
report nearly 50 M rays per second on an NVidia GTX285,
not including shading.

More recently, Novdk et al. used GPU path tracing
with path regeneration to double the performance of the
path tracing algorithm on stream processors [24]. Their
system is able to render interactive previews on commodity
hardware, achieving 13M rays per second on an NVidia
GTX285 on moderately complex scenes, and is claimed to
be “the first efficient (bidirectional) path tracer on the GPU”
Van Antwerpen proposed a generic streaming approach for
GPU path tracing algorithms and used this to implement
three streaming GPU-only unbiased rendering algorithms:
a path tracer, a bidirectional path tracer, and an energy
redistribution path tracer [25].

Outside academia, several applications implement inter-
active path tracing. Examples are octane [26], smallpt [27],
tokaspt [28], smallluxgpu [29], and nvidia’s Design Garage
demo [30].

3. Efficient GPU Path Tracing

The unbiased path tracing algorithm with russian roulette is
shown in Algorithm 1. The algorithm aims to find a number
of paths that connect the camera to light sources, via zero
or more scene surfaces, by performing a random walk. The
expected value of the average energy transported via these
paths is the solution to the rendering equation [31]. To reduce
the variance of the estimate, two extensions are commonly
used. Russian Roulette is used to reduce the number of
very long paths (which generally contribute little to the final
image), and at each nonspecular surface interaction, direct
light is explicitly sampled.

The path tracing algorithm can be efficiently imple-
mented as on the GPU, using a single kernel per pixel. The
kernel loops over the samples for a pixel and outputs the
final color. This limits memory access to read-only scene
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FIGURE 4: Ray tracing versus path tracing. (a) was rendered using the Arauna ray tracer [9], which supports direct illumination from point
lights only. (b) uses path tracing for direct and indirect illumination of area light sources.

FIGURE 5: Scene from Kayija’s paper, rendered using our CUDA path
tracing algorithm.

access, and a single write for the final pixel color. CUDA code
for this is provided in Appendix Section. Example output
is shown in Figure 5. For this scene, ray/scene intersection
uses a hardcoded scene consisting of axis aligned rectangular
cuboids, spheres, and ellipsoids. Materials are limited to
diffuse and dielectric. Using this setup, a single NVidia

GTX580 achieves 750 M rays per second, which results in an
almost converged image at real-time frame rates.

For more general scenes, we can replace the hardcoded
ray/scene intersection by the BVH traversal code proposed
by Aila and Laine [19].

4. The Brigade System

A renderer for games has specific requirements, which differ
significantly from other applications. Of these, the require-
ment of real-time performance probably has the greatest
overall impact on the design of a renderer. A modern game
runs at 60 fps or more. For certain genres, a lower frame rate is
acceptable. For the game Doom 4, a fixed frame rate of 30 fps
is enforced by the renderer [32].

Frame rate translates to a strict millisecond budget, which
must be divided over all subsystems. Note that if we chose to
run the subsystems in order, the budget available to rendering
decreases. If, on the other hand, we run the subsystems and
rendering in parallel, we introduce input lag: in a worst-case
scenario, user input that occurred at the beginning of frame
N will be rendered in frame N + 1 and presented to the user
just before frame N + 2 starts.



for each pass
for each pixel
Crp < 0, scale,y, —1
hitDiffuse « false
D,0 «ray_through_pixel()
do
// find material, distance and normal along ray
m, I, N « find nearest(O, D)
if (isempty(m))
break //path left scene
else if (is_light(m))
if not hitDiffuse
Crgh < Crgp +SCale,, * getEmissive(m)
break // path hit light
else
O«1
if is_diffuse(m)
Crgb < Crgp + sampleDirect()
hitDiffuse«—true
D, scale,y, — evalBRDF(m,1,D,N)
p < RR(m)
if rnd() < p) break // russian roulette
scale,y, < scale, * (1-p)
while (true)
pixel[x, y] < pixel[x, y] + ¢,g
endfor
endfor

ArLgoriTHM 1: The path tracing algorithm with Russian roulette and
explicit light sampling, in a format suitable for sequential execution.
The final image is scaled by 1/passes.

Apart from real-time performance, rendering for games
requires dynamic scenery. Scene elements may undergo com-
plex movement due to physics as well as hand-crafted anima-
tions and procedural effects such as explosions. Contrary to
popular belief, global changes to scenery are uncommon in
games. Typically, large portions of the scenery are static, to
avoid game states in which the user cannot progress.

Tightly coupled to the real-time requirement is the fact
that games are interactive applications. The renderer must
produce correct results for all possible user input and cannot
predict any scenery changes that depend on user interaction.

On top of the generic requirements, there are require-
ments that evolve over time, most notably rendering resolu-
tion and scene complexity. At the time of writing, a typical
game renders at a resolution of at least 1280 x 720 (HD
720). A typical scene consists of hundreds of thousands of
polygons.

The Brigade rendering system is designed specifically
for games and applies and encapsulates the technology of
Section 3 in this context. Brigade renders scenes consisting
of static and dynamic geometry, consisting of millions of tri-
angles. It uses a fixed-function shading pipeline and supports
diffuse and specular surfaces with textures and normal maps,
as well as dielectrics with absorption. The animation system
supports rigid animation and skinned meshes. Scenes are
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FIGURE 6: Functional overview of the Brigade renderer, combined
with a generic game engine.

illuminated using emissive surfaces, of which an unlimited
amount may be present.

The rendering system achieves high performance by fully
utilizing all compute devices in a heterogeneous architecture
(Section 4.2). It implements a synchronization-free balanc-
ing scheme to divide the workload over these compute
devices (Section 4.3). Adaptive converging (Section 4.5) and
dynamic workload scaling (Section 4.7) are used to ensure a
real-time frame rate at high-definition resolutions.

4.1. Functional Overview. Figure 6 provides a functional
overview of the Brigade renderer. In a typical setup, Brigade
is combined with a game engine that provides components
not specific to the rendering algorithm, such as artificial
intelligence and physics libraries. In terms of abstraction,
the functionality provided by Brigade is thus similar to the
functionality implemented by OpenGL and DirectX.
The main components of Brigade are as follows.

4.1.1. Scene Graph. The scene and hierarchical scene graph
contain all data required for rendering. This includes the
object hierarchy, mesh data, materials, textures, cameras, and
lights. The object decomposition represented by the scene
graph is used to steer acceleration structure construction,
which makes the scene graph an essential data structure
within the system. For convenience, the scene graph object
implements keyframe and bone animation.

4.1.2. Core. The core implements the Render () method,
initiates acceleration structure updates, synchronizes scene
data changes with the compute devices, and divides work over
the tracers, if there is more than one.

4.1.3. Acceleration Structure Updater. The acceleration struc-
ture updater maintains the BVH, by selectively rebuilding
parts of the acceleration structure based on changes in the
scene graph.

4.1.4. Tracers. A tracer is an abstract representation of a com-
pute device or group of similar compute devices. A “compute
device” in this context can be a GPU, the set of available CPU
cores, or a compute device connected over a network. The
tracer holds a copy of the scene data and the acceleration
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FIGURE 7: Double buffering the BVH. The CPU updates the BVH
and sends changes to the tracers. Each tracer processes the changes
in a commit buffer before rendering the next frame.

Set
parameters

FIGURE 8: Tracer thread initialization and main loop.

structure and implements the path tracing algorithm with
the next event estimation and multiple importance sampling.
Tracers are assumed to produce identical output for identical
input (except for nondeterministic aspects of the rendering
algorithm).

The acceleration structure used by the tracers is the only
cached data structure that is derived from scene data. All
other data can be modified on-the-fly. This includes (all
properties of) materials and lights.

In this system, the governing processes run on the CPU,
and tracers (which in a typical setup primarily run on the
GPUs) function as workers.

4.2. Rendering on a Heterogeneous System. A modern PCisa
heterogeneous architecture, which typically consists of a CPU
with multiple cores, and at least one GPU.

To efliciently use the available compute power, several
options are available.

(1) The rendering algorithm is implemented completely
on either the CPU or the GPU.

(2) The rendering algorithm is implemented on both the
CPU and the GPU.

(3) Tasks are divided over CPU and GPU.

Each of these options has advantages and disadvantages. A
renderer that runs entirely on the CPU or GPU may result in
underutilization of the other compute device. An algorithm
that is implemented on both the CPU and the GPU will use
all resources but requires a greater implementation effort.
Dividing tasks over CPU and GPU seems the most attractive
option. This is, however, only efficient when CPU and GPU
spend equal amounts of time on their assigned tasks.

A fourth option is to use a hybrid solution, where the CPU
has specific tasks and uses the frame time that remains to
assist the GPU. This is the approach implemented in our sys-
tem. The CPU is responsible for game logic and acceleration
structure maintenance, while the tracers perform the actual
rendering. Assuming a CPU tracer is available, this system is

able to keep compute devices fully occupied. The process is
illustrated in Figure 7.

For each frame, the CPU updates the game state. The
resulting changes to the scene graph are then used to update
the BVH. The changes to the BVH, as well as any other scene
changes, are sent to the tracers, where they are placed in a
commit buffer, which the tracers use to iteratively update a
local copy of the scene.

Parallel to these activities, the tracers render using the
data that was prepared in the previous frame. A tracer starts
a frame by processing the changes in the commit buffer,
and then renders a part of the frame. CPU tracers are
handled slightly differently than GPU tracers, by postponing
rendering until the acceleration structure has been updated.
This prevents rendering interferes with acceleration structure
maintenance.

When no CPU tracer is available, the CPU can execute
game code that does not affect the scene graph after copying
scene changes to the commit buffers of the tracers.

4.3. Workload Balancing. The tracer flow is shown in
Figure 8. Upon instantiation, the tracer spawns a thread that
executes the worker loop. This loop waits for a signal from the
core, renders a number of pixels, and signals the core, before
going to sleep until the next frame.

When more than a single tracer is available, the core
estimates an optimal workload division prior to rendering
each frame. The advantage of this approach is that no
communication between the tracers and the core is required
once rendering has commenced, which greatly reduces com-
munication overhead for GPU and network tracers. Dividing
the work is nontrivial; however, not every compute device
may have the same rendering capacity, and not every line of
pixels has the same rendering cost (see Figure 10).

In a game, a typical camera moves in a somewhat smooth
fashion. A good workload division for one frame will thus
be at least reasonable for the next frame. We exploit this by
adjusting the workload balance in an iterative manner.

We implemented four schemes to divide work over the
tracers.

4.3.1. Do Not Balance. In this naive scheme, all workers are
assigned an equal share of the screen pixels; no balancing is
performed. This scheme is included for reference.

4.3.2. Robin Hood. This scheme starts with an equal distribu-
tion of the work for each tracer. After completing each frame,
the tracer that finished last passes one work unit (one work
unit equals four rows of pixels) to the tracer that finished
first. When the work is poorly distributed, it may take a large
number of frames to properly balance.

4.3.3. Perfect. Calculates the exact amount of work a tracer
can handle based on the previous frame, but without con-
sidering differences in cost between lines of pixels. This may
result in hickups, when many expensive lines are assigned
to a tracer at once. The perfect balancer uses the following



TABLE 1: Average percentage of summed rendering time for all GPUs
spent idling due to early completion, for the four balancing schemes,
over 128 frames, for a slow and a faster moving camera. Measured for
the Aztec scene.

2 GPUs 3 GPUs
Slow Fast Slow Fast
None 46.4 30.2 45.1 47.2
Robin Hood 2.1 8.2 4.9 20.7
Perfect 2.8 2.4 12.2 8.0
Perfect Smooth 1.4 3.4 2.8 6.2

formula to determine the workload for worker w for frame
i + 1 based on the unit count and render time of frame i:

. . -1
units,, ; time,, ;

P _
Y (units; time; ")

w,itl = 1
Perfect Smooth. Same as “Perfect’, but this time, the workload
per tracer is smoothed over multiple frames, using the
following formula:

Spiv1 =P, +(1-a) S, (2)

where « € (0, 1).

Figure 9 shows the efficiency of the four schemes, for
a spinning camera in the Aztec scene. For a slow moving
camera, the workload in two subsequent frames is similar. All
schemes except the overcompensating Perfect balancer work
well. The Robin Hood balancer exhibits poor efficiency for
the first frames. For a faster camera, Robin Hood is not able
to keep up. For this situation, the aggressive Perfect balancer
outperforms even the Perfect Smooth balancer. When more
GPUs are used, Perfect Smooth is clearly the optimal scheme.

Table 1 shows the average efficiency of the four balancers
over 128 frames, for a slow and a faster moving camera. This
table confirms that the Perfect and Perfect Smooth schemes
are similar in terms of average efficiency. The table does not,
however, show the spikes that are visible in the graphs.

4.4. Double-Buffering Scene Data. For acceleration structure
maintenance, we use the following assumptions.

(1) A game world may consist of millions of polygons.
(2) A small portion of these polygons is dynamic.

(3) Several tracers will use the same acceleration struc-
ture.

Based on these assumptions, a full rebuild of the BVH for each
frame is neither required nor desired, as it would put a cap
on maximum scene complexity, even when very few changes
occur. We reuse the system described by Bikker [13], where
each scene graph node has its own BVH, and a top-level BVH
is constructed per frame over these BVHs. Each changed
scene graph node is updated, using either full reconstruction
or refitting.

Brigade uses a double-buftered approach for BVH main-
tenance. During a single frame, the CPU updates the BVH
based on modifications of the scene graph. The resulting
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changes to the BVH are sent to the tracers, where they are
placed in a commit buffer. At the start of the next frame,
the commit buffer is processed, which results in an up-to-
date BVH for each of the tracers. This process is illustrated
in Figure 7.

Each frame is thus rendered using the BVH constructed
during the previous frame. Acceleration maintenance con-
struction thus only becomes a bottleneck when the time it
requires exceeds the duration of a frame.

4.5. Converging. To reduce the noise in the final rendered
image, several frames can be blended. Each pixel of the
final image is calculated as Cg, = (1= f)Cprey + fCorews
where f € (0,1]. Value f is chosen either manually,
or automatically, for example, based on camera speed. For
stationary views, this approach results in a higher number of
samples per pixel. For nonstationary views, this results in an
incorrect image. The result can be improved by linking f to
camera movement. For a stationary camera, a small value of
f allows the renderer to blend many frames. For a moving
camera, a value of f close to 1 minimizes ghosting.

Note that even though the camera may be static, objects
in the scene may not be. It is therefore important to limit the
minimum value of f to keep the ghosting for dynamic objects
within acceptable bounds.

4.6. CPU Single Ray Queries. Brigade exposes a CPU-based
synchronous single ray query that uses the BVH from the
previous frame, to provide the game engine with a fast single-
ray query. This query is useful for a number of typical game
situations, such as line-of-sight queries for weapons and Al,
collision queries for physics, and general object picking. The
single-ray query uses the full detailed scene (rather than, e.g.,
a coarse collision mesh), including animated objects.

4.7 Dynamically Scaling Workload. Maintaining a sufficient
frame rate is of paramount importance to a game application.
In this subsection, we propose several approaches to scale the
workload.

4.71. Adjusting Samples per Pixel. The relation between
frames per second and samples per pixel is almost linear.
Brigade adjusts the rendered number of samples per pixel
when the frame rate drops below a specified minimum and
increases this value when the frame rate exceeds a specified
maximum.

4.7.2. Balancing Primary Rays and Secondary Rays. By bal-
ancing the ratio of primary and secondary rays, the quality
of antialiasing and depth of field blurring can be traded for
secondary effects. The primary rays are faster; increasing their
ratio will also improve frame rate.

4.7.3. Scale Russian Roulette Termination Probability. Chang-
ing the termination probability of Russian roulette does
not introduce bias, although it may increase variance [33].
Altering the termination probability affects the number of
deeper path segments, and thus frame rate. Unlike the
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FIGURE 9: Efficiency of three workload balancing schemes, for two GPUs ((a)-(b)) and three GPUs ((c)-(d)), small camera movements ((a)—-
(c)) and larger camera movements ((b)-(d)). Values are percentages of rendering time spent idling due to early completion. Measured for the

Aztec scene.
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FIGURE 10: Render cost visualized: pixels representing the sky dome or light sources have a significant lower cost than other pixels. Cost is
represented by greyscale values (brighter is higher cost), per 32 pixels (a full warp). Measured using a tracer implemented in NVidias CUDA

[11] for two scenes: Aztec (a) and Sibenik Cathedral (b).

previous approach, scaling the termination probability using
a factor which is based on frame rate does not distinguish
between primary and secondary rays and allows smooth
scaling of performance.

Alternatively, the workload can be reduced by reducing
rendering resolution, or limiting trace depth. Limiting the
maximum recursion depth of the path tracer introduces bias
but also improves performance. In practice, due to Russian
roulette, deep rays are rare, which limits the effect of a
recursion depth cap on performance.

For game development, the scalability of a renderer based
on path tracing is an attractive characteristic. A relatively slow

system is able to run the path tracer at an acceptable frame
rate, albeit perhaps not at an acceptable level of variance.
Faster systems benefit from the additional performance by
producing more samples per pixel, and thus a smoother
image.

5. Discussion

The rendering system described in the previous section is
relatively simple. To a large extend, this simplicity is the
result of the chosen rendering algorithm. The path tracer
does notrely on any precalculated data, which greatly reduces
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FIGURE 11: Two views from the “Reflect” game, rendered at 448 x 576 pixels using 16 spp, scaled up to 896 x 576.

data dependencies. There are two exceptions, and these
are also the most complex parts of the system. The first
is the acceleration structure, which is cached and updated
iteratively, in a double-buffered fashion. As a result, games
cannot make arbitrary changes to the scene graph. The second
is the data synchronization between the renderer core and the
tracers, which generally run on the GPU(s). Using a commit
buffer system, Brigade makes this virtually invisible to the
application, and few restrictions apply.

Apart from the tracers, Brigade is a platform-independent
system. The tracers abstract away vendor-specific APIs for
GPGPU and allow the implementation of networked tracers
and CPU-based tracers. When using a CPU tracer, the system
is able to achieve full system utilization, with little overhead.

6. Applied

To validate our results, we have applied the renderer to two-
student game projects. Both games have been produced in
approximately 14 working days.

6.1. Demo Project “Reflect”. The Reflect game application is
a student game that was developed using an early version of
the Brigade engine. The game scenery is designed to simulate
actual requirements for game development, and purposely
mimics the graphical style of a well-known modern game
(Portal 2 [34]).

The scenery has the following characteristics:

(i) scenery consists of approximately 250k triangles,
divided over multiple, separated rooms;

(ii) the scene is illuminated by thousands of area light
sources, many of which are dynamic;

(iii) the game world is populated by dozens of dynamic
objects.

Art assets for the game were created in Alias Wavefront
Maya 2011 and were directly imported into the game.

Like Portal 2, Reflect is a puzzle game, where the player
advances by activating triggers that in turn open doors or
activate elevators. A “mirror gun” is available to the player to
transform flat and curved wall sections into mirrors. These
mirrors, as well as glass cube objects, can be used to divert
lasers that block the way.

Configuration. Reflect was developed for a dual-CPU/dual-
GPU machine (2 hexacore Intel Xeon processors, 2 NVidia
GTX470 GPUs). We implemented a CPU tracer as well as a
CUDA GPU tracer. For performance reasons, we limited the
path tracers to a single diffuse bounce.

Game-Specific Optimizations. The scenery of the game con-
sists of many rooms, separated by doors. A common opti-
mization in rasterization-based renderers is to disable geom-
etry that is known to be invisible. For a path tracer this does
not significantly improve performance. We did find, however,
that turning off lights in those rooms reduces variance, as the
path tracer will no longer sample those light sources. This
optimization is implemented at the application level: a system
of triggers in the scene enables and disables sets of lights.

Performance and Variance. Figure 11 shows two scenes from
the game running on a dual-CPU/dual GPU machine. At
16 spp, the game runs at 10-12fps. At this sample count,
brightly lit scenes are close to acceptable. Darker regions,
such as the area under the platform in the right image,
show significant temporal noise. Careful level layout helps to
reduce objectionable noise levels. To the visual artist, this is
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FIGURE 12: System utilization for the four views shown in Figure 13.

counter-intuitive, where rasterization-based renderers tend
to use small amounts of point light sources, a path tracer
benefits from large area lights, and incurs no slowdown when
those lights are animated.

Materials in the levels are deliberately simple. Although
specular surfaces are supported by this version of the ren-
derer, specularity significantly increases noise, making this
impractical in most situations.

Observations. The Reflect game struggles to achieve an
acceptable frame rate, at a low resolution, on a high-end
system. The project does, however, show the potential of path
tracing for games. The art for this game was produced in Maya
2011 and was directly imported into the game, leading to very
short development cycles, and usable art on the second day
of the project. Within the same time span, the programmers
implemented a basic physics engine using ray queries that
allowed them to navigate the rooms.

The freedom in lighting setup led to a final level that
contains approximately 10 k light emitting polygons. Direct

and indirect illumination simply works and results in subtle
global illumination, both for static and dynamic objects.

The CPU tracer that was implemented for this project
proved to be problematic: keeping the CPU and GPU tracers
in sync required significant engineering effort, while the
overall contribution of the CPU is quite small.

6.2. Demo Project “It's About Time”. The student game “It’s
About Time” was created using a recent version of the Brigade
renderer. Four views from the game are shown in Figure 13.

“Its About Time” is a third-person puzzle game that
takes place in deserted Aztec ruins. The player must collect
anumber of artifacts by solving a number of puzzles, located
in several areas in an open outdoor world.

6.2.1. Configuration. “It's About Time” is designed to run on
a typical high-end system, using a single hexacore CPU and
one or more current-generation NVidia or AMD GPUs. The
game renders to standard HD resolution. This resolution can



10

International Journal of Computer Games Technology

FIGURE 14: Noise level and performance at 2 spp, 4 spp, 8 spp, and 16 spp. Rendering resolution is 640 x 360. Measured on a system with a

6-core CPU and two NVidia GTX470 GPUs.

be halved to improve frame rate. We developed an updated
CUDA tracer that roughly doubles the performance of the
first iteration (as used in Reflect), as well as an OpenCL
tracer, which produces identical images. A CPU tracer was
not developed; the CPU is reserved for acceleration structure
maintenance and game logic. The implemented path tracers
are unbiased.

6.2.2. Project-Specific Features. One of the puzzles features an
animated water surface that responds to the player, consisting

of tens of thousands of polygons. For the player character, a
detailed set of skinned animations is used. The puzzles make
extensive use of rigid animation. As a result, acceleration
structure maintenance requires considerable processing. A
detailed day-night cycle and an animated cloud system (with
shadowing) were implemented to emphasize the strength
of the path tracer for dynamic lighting. A standard physics
engine was integrated to provide high quality physics simula-
tion. The level is detailed and consists of 1.4 M triangles. The
artists used a small set of sand stones to construct most of the
buildings and ruins.
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6.2.3. Game-Specific Optimizations. The game world is illu-
minated by a sun (or the moon), and some smaller light
sources. To reduce variance, we modified the path tracer to
always sample two light sources per diffuse surface inter-
action. One of these rays always probes the primary light
source. This significantly reduces variance in most areas.
Adaptive converging is used to improve image quality when
the camera is (almost) stationary. These application-specific
optimizations where implemented in the GPU tracer code.

6.2.4. System Utilization. Figure 12 shows system utilization
for the four views of Figure 13, rendered at 4 spp.

For the first two views, the CPU is underutilized, as both
acceleration structure maintenance and game logic require
little processing time. For the other two views, the camera is
near a simulated water surface that consists of 18 k polygons.
Both the simulation itself and the resulting acceleration
structure maintenance require considerable processing time.
This also affects the GPU tracers, which use more time to
transfer and process the modified scene data.

6.2.5. Memory Use. The Brigade renderer is an in-core
rendering system, which stores multiple copies of the scenery.
The host system stores a full copy of the scene and synchro-
nizes this data with each of the tracers.

For the 1.4 M triangle scene of “It's About Time,” memory
use is 737 MB, which consists of 175 MB triangle data, 42 MB
for the acceleration structure, and 520 MB texture data. The
size of other data structures is negligible, except for the
commit buffer, which must be large enough to store per-
frame changes to scene data and the acceleration structure.
For “It's About Time,” we used a 2 MB commit buffer.

6.2.6. Performance and Variance. Figure 14 shows a single
scene from the game, rendered using varying sample counts.
As in Reflect, areas that are directly illuminated converge
quickly, while shadowed areas exhibit more noise. For the
outdoor scenery of “It’s About Time,” an acceptable quality
for most camera views is obtained with 8 or 16 spp. On a
system with two NVidia GTX470 GPUs, we achieve 2 to 4 spp
at real-time frame rates, at a quarter of 720p HD resolution
(640 x 360). This lets us quantify the remaining performance
gap: real-time frame rates at 720p require 8 to 16 times the
achieved performance.

7. Conclusions and Future Work

We have investigated the feasibility of using physically based
rendering in the context of real-time graphics for games. We
implemented a renderer based on the path tracing algorithm,
and used this to develop two proof-of-concept games. We
have shown that real-time path tracing is feasible on current

1

generation hardware, although careful light setup is required
to keep variance levels acceptable.

The development of a game using path tracing for render-
ing simplifies game development. This affects both software
engineering and art asset development. Since Brigade does
not distinguish static and dynamic light sources and does
not impose any limitations on the number or size of light
sources, lighting design requires little knowledge beyond
discipline-specific skills. The fact that polygon counts and
material properties have only a small impact on rendering
performance provides level designers and graphical artists
with a high level of freedom in the design of the game. This
reduces the number of iterations level art goes through, and
allows a team to have game assets in the engine early on in
the project.

Despite these positive experiences, real-time path tracing
in commercial games is not feasible yet on current generation
high-end hardware. Acceptable variance at HD resolution
and real-time frame rates requires 8x to 16x the performance
that can be achieved on our test system. Without further
algorithmic improvements, this level may be reached in a
few years. We do believe this can be accelerated. Already
GPU ray tracing performance is benefiting from architectural
improvements, on top of steady performance improvements.
Another way to partially solve the rendering performance
problem is to use cloud rendering, where dedicated servers
are used for rendering images, which are then transferred
over the internet to the client. At the time of writing, the
Brigade system is being integrated into the OTOY cloud
service, specifically for this purpose. The cloud rendering
service will be made available to indie game develop-
ers in the near future and will allow them to use path
tracing without the need of owning sufficiently powerful
hardware.

Apart from raw performance, we should address the
issue of variance. While low sample rates already result in
reasonably converged images in our experiments, this will
not be sufficient for more complex materials. Techniques like
bidirectional path tracing (BDPT) and energy redistribution
path tracing (ERPT) may solve this to some extent. However,
not all of these techniques produce acceptable images at
low sample rates; therefore, a minimum performance level
is required before this can be considered for real-time
graphics.

A temporary solution to the rendering performance
problem is to use postprocessing on the path traced image.
Although some work has been conducted in this area, it
typically does not consider all the data that is available in a
path tracer, which leaves room for improvement. Note that
any form of postprocessing will introduce bias in the rendered
image. For the intended purpose, this is, however, not an
objection.

Appendix

Efficient CUDA implementation of the path tracing algo-
rithm, using a single kernel per pixel (see Algorithm 2).
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extern "C" global void TracePixelReference()
{
// setup path
int numRays = context.width * context.height;
int idx0 = threadIdx.y + blockDim.y =*
(blockIdx.x + gridDim.x * blockIdx.y) +
((context.firstline * context.width) >> 5);
int tx = threadldx.x & 7, ty = threadldx.x >> 3;
int tilesperline = context.width >> 3;
int xt = idx0 % tilesperline;
int yt = idx0/tilesperline;
int px = (xt << 3) + tx, py = (yt << 2) + ty;
int pidx = numRays -1 -
(px + py #* context.width);
RNG genrand(pidx, (clock() * pidx =
8191) "140167);
int spp = context.SampleCount;
float rcpw = 1.0f/context.width;
float u = (float)px * rcpw —0.5f;
floatv = (float) (py + (context.width —
context.height) % 0.5f) * rcpw —0.5f;
float3 E = make_float3(0, 0, 0);
// trace path
for(int sample = 0; sample < spp; sample++)
{
// construct primary ray
float3 0, D;
CreatePrimaryRay (0, D) ;
// trace path
float3 throughput = make float3(1, 1, 1);
int depth = 0;
while (1)
{

int prim = 0;
float2 BC, UV = make_float2(0, 0);
float dist = 1000000;
bool backfaced = false;
intersect (0, D, dist, BC, prim, backfaced) ;
0 += D % dist;
if (prim == -1)
{
E += throughput * GetSkySample(D);
break;
1
Triangle& tri = context.Triangles[prim];
TracerMaterial mat =
context.Materials[tri.GetMaterialIdx()];
if (mat.flags & Material::EMITTER) // light
{
E += throughput * mat.EmissiveColor;
break;

}

else // diffuse reflection
{
float3 matcol = tri.GetMaterialColor(
mat, BC, UV);
float3 N = tri.GetNormal(mat, BC, UV) =
(backfaced ? —-1: 1);

ALGorITHM 2: Continued.




International Journal of Computer Games Technology

13

}
depth++;
{
}

}
}

D = normalize(RandomReflection(
genrand, N) );
throughput %= matcol % dot(D, N);
0 += D * EPSILON;
if (depth > 3)

if (genrand() > 0.5f) break;
throughput *= 2.0f;

context.RenderTarget [pidx] =
make_float4(E/(float)spp, 1);

ALGORITHM 2: Path tracing implemented in CUDA.
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