
DOI: 10.1111/j.1467-8659.2012.03073.x COMPUTER GRAPHICS forum
Volume 31 (2012), number 6 pp. 1936–1947

Improving Data Locality for Efficient In-Core Path Tracing

J. Bikker

NHTV University of Applied Sciences, Breda, The Netherlands
bikker.j@nhtv.nl

Abstract
In this paper, we investigate the efficiency of ray queries on the CPU in the context of path tracing, where ray
distributions are mostly random. We show that existing schemes that exploit data locality to improve ray tracing
efficiency fail to do so beyond the first diffuse bounce, and analyze the cause for this. We then present an alternative
scheme inspired by the work of Pharr et al. in which we improve data locality by using a data-centric breadth-first
approach. We show that our scheme improves on state-of-the-art performance for ray distributions in a path tracer.

Keywords: ray tracing, path tracing, ray divergence, data locality

ACM CCS: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism Raytracing

1. Introduction

Over the past decade, CPU ray tracing performance (relative
to absolute performance) has greatly increased. In their 1999
paper [PMS*99], Parker et al. report 1M rays per second (for
figure 16) on a 24Gflops SGI Origin 2000 system. Boulos
et al. achieve 3M for (almost) the same scene [BEL*07], on
a 2Gflops machine, a 36× improvement. The algorithms that
enabled these advances depend on coherent ray distributions,
where rays have similar origins and directions, to work well.
In the context of Monte Carlo path tracing, this coherency is
mostly unavailable: directional coherency is typically already
lost for the first diffuse bounce, and although these rays
still have similar ray origins, this is not the case for the
second diffuse bounce. Beyond this point, ray distributions
are essentially random. This leads to a highly random access
pattern of scene data, and, as a consequence, poor utilization
of caches and SIMD hardware.

In this paper, we investigate the work that has been done to
improve data locality in the context of ray tracing. We show
that the extend to which existing approaches improve data
locality is limited in the context of path tracing, and analyse
the cause of this. For divergent rays, we propose a traversal
scheme that uses breadth-first traversal and batching to im-
prove the performance of a ray packet traversal scheme. Our

scheme is based on the work by Pharr et al., which targeted
out-of-core rendering. Unlike their system, our scheme tar-
gets the top of the memory hierarchy. Our system consistently
outperforms single-ray traversal through a multi-branching
bounding volume hierarchy (BVH).

2. Path Tracing and Data Locality

The game developer and optimisation specialist Terje
Mathisen once stated that “almost all programming can be
viewed as an exercise in caching” [Abr97]. With this remark,
he points out the importance of caches on modern com-
puter architectures, especially when algorithms deal with
large amounts of data. Considering the vast gap between the
rate at which a processor can execute commands, and the
rate at which memory can supply data for these commands,
caching is usually the optimisation with the greatest effect.

Caches are part of the memory hierarchy [BO10] (see
Figure 1). Small, but fast caches hide the latency of larger,
but slower memories, assuming a certain level of data lo-
cality exists [KA02]. In computer science, data locality is
subdivided in temporal locality, spatial locality and sequen-
tial locality. In modern systems, caches benefit from the first
two, while the latter is exploited by instruction prefetching.

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics
Association and Blackwell Publishing Ltd. Published by
Blackwell Publishing, 9600 Garsington Road, Oxford OX4
2DQ, UK and 350 Main Street, Malden, MA 02148, USA. 1936

J. Bikker / Data Locality for In-Core Path Tracing 1937

Figure 1: The memory hierarchy: smaller, but faster caches
hide the latency of larger but slower memories. Shown cache
sizes and latencies are for our test system (Intel Xeon X5670),
per core.

Figure 2: Access of the levels of the memory hierarchy,
scaled by access cost (in CPU cycles), for the first 14 levels of
an acceleration structure. Measured for single ray traversal,
for the Soda Hall scene.

Optimal data locality in an algorithm is achieved when the
number of times that the same datum is loaded into the caches
is one. In other words: all the work that involves a particular
datum is carried out, after which the datum will not be ac-
cessed again. Note that uniform streaming algorithms, where
one kernel is applied to all elements of an input stream, nat-
urally reach this optimum.

For algorithms that perform tree traversal, data locality
tends to decrease with tree node depth. While nodes high
in the tree are repeatedly accessed for successive queries,
deeper levels are often evicted before being accessed again.
This is shown in Figure 2. The graph shows how the cost
of accessing the various levels of the memory hierarchy is
distributed over the levels of a four-wide multi-branching
BVH, traversed by the rays of an incoherent ray distribution.

This data was gathered using a cache simulator, which is
described in Section 4. The L1 cache is able to handle the
majority of the transfers. At deeper levels, more queries fall
through to L2, L3 and memory. While L1 is mostly ineffective
for the deepest levels, the total amount of traffic at these levels
is small, and contributes little to overall memory access cost.

The overall cost of memory access can be reduced by im-
proving data locality. Better data locality keeps data higher in
the cache hierarchy, and reduces the total number of memory
transfers, by using the same data for more rays.

2.1. SIMD efficiency and data locality

Modern CPUs strongly depend on single instruction multi-
ple data (SIMD) technology to achieve optimal compute effi-
ciency. SIMD operates on vectors, rather than on scalars. As-
suming that multiple streams of data are available for which
the same instructions are to be executed, SIMD hardware
processes these streams in parallel. The elements of the vec-
tors used to operate on these streams are typically referred
to as lanes. CPUs operate on four lanes (Intel/SSE [TH99],
AltiVec [DDHS00]), eight lanes (Intel/AVX [Lom11]) or six-
teen lanes (Intel/Larrabee [SCS*08]). Similar technology on
the GPU simultaneously processes 32 lanes [Dog07, Gla09].

SIMD is effective when all lanes require the same instruc-
tions. When this is not the case (e.g. due to conditional code),
operations can be masked, or processed sequentially. In both
cases, SIMD utilisation decreases.

SIMD efficiency is also affected by scatter/gather opera-
tions: loading data into vector registers is faster if the required
addresses are sequential. In fact, on many SIMD architec-
tures, this is a requirement; sequential code is used when this
requirement is not met. At the same time, sequential data
access reduces the total number of cache lines that is read
from memory, as sequential data typically resides in the same
cache line.

Efficiency of the memory hierarchy and SIMD efficiency
are tightly coupled: optimisations that aim to improve data
locality will often also lead to better SIMD utilisation.

2.2. Previous work on improving data locality in ray
tracing

Several authors recognise the importance of data locality for
the performance of the ray tracing algorithm.

Ray Packets Zwaan, Reinhard and Jansen propose to use
ray packet traversal to amortize the cost of cache misses over
the rays in the packet [vdZRJ95, RJ97]. By traversing ray
packets (referred to as pyramids in their papers) rather than
single rays, acceleration structure nodes are fetched once for a
number of rays. The authors report improved data locality for
coherent ray distributions. Wald et al. uses SIMD to traverse

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1938 J. Bikker / Data Locality for In-Core Path Tracing

a kD-tree with a ray packet containing four rays [WSBW01],
and achieves interactive frame rates on a cluster of PCs.
Smittler et al. propose a custom hardware architecture, Saar-
COR [SWS02], that traces packets of 64 rays. They hide
the latency of cache misses by swapping between ray pack-
ets, using a technique similar to multi-threading [PBB*02].
Later, the concept of ray packet traversal is generalised to ar-
bitrarily sized ray packets by Reshetov [Res07] and to other
acceleration structures [WBS07, WIK*06].

Reordering Based on the observation that packets of
secondary rays often exhibit little coherence, reordering
schemes aims to regain coherence by reordering the sec-
ondary rays from multiple packets into more coherent sets.
Mansson et al. [MMAM07] investigated several reordering
methods for secondary rays. They aim to create coherent
packets of secondary rays by batching and reordering these
rays. They conclude that due to the cost of reordering none
of the heuristics improves efficiency when compared to sec-
ondary ray performance of the Arauna system [Bik07], which
does not attempt to reorder secondary rays. Overbeck et al.
propose a ray packet traversal scheme that is less sensitive to
degrading coherence in a ray packet [ORM08]. Their parti-
tion traversal scheme reorders the rays in the packet in-place
by swapping inactive rays for active rays and by keeping
track of the last active ray. This scheme is less efficient for
primary rays, but performs better for secondary rays.

Hybrid schemes Taking into account the inefficiency of
ray packets for divergent ray distributions, Benthin et al.
proposed a hybrid scheme for the Intel MIC architecture
[Int10] that traces packets until rays diverge, after which it
switches to efficient single ray traversal [BWW*11].

Breadth-first A typical traversal scheme uses an outer
loop that iterates over a set of rays, and an inner loop that
processes acceleration structure nodes. Hanrahan proposed
to swap these loops [Han86]. By using the inner loop to it-
erate over rays rather than objects, access to objects stored
on disk is minimized. In their 2007 study, Wald et al. in-
vestigated breadth first ray tracing with reordering at every
step [WGBK07]. They conclude that breadth-first ray tracing
reduces the number of acceleration structure nodes that is vis-
ited, but also that the high reordering cost may not justify this.
Boulos et al. continue this work [BWB08]. In their paper,
they show that the performance gains of demand-driven re-
ordering out-weight the overhead. For diffuse bounces, these
gains drop below 2x however. On the GPU, Garanzha and
Loop propose breadth-first traversal of rays [GL10]. Their
scheme sorts the set of rays into coherent packets and then
performs a breadth-first traversal of a BVH. On the GPU, they
claim a 3x improvement over depth-first implementations for
soft shadows cast by large area lights.

Batching Several authors propose to use a form of batch-
ing to improve data locality. In these schemes, traversal of a
single ray is broken up in parts; rays are batched in nodes of
the acceleration structure, and advanced when such a node

is scheduled for processing. Pharr et al. [PKGH97] describe
a system, Toro, for out-of-core ray tracing where objects
are subdivided using regular grids. Rays are batched in the
voxels of a secondary regular grid. This system is discussed
in more detail in Section 3. Kato and Saito schedule shad-
ing separately from ray traversal and photon map look-up
to hide latency on a cluster of PCs in their Kilaeua sys-
tem [KS02]. Budge et al. [BBS*09] perform out-of-core
rendering on hybrid systems by breaking up data and al-
gorithmic elements into modular components, and queu-
ing tasks until a critical mass of work is reached. Navratil
et al. propose a system that actively manages ray and geom-
etry states to provide better cache utilisation and lower band-
width requirements [NFLM07]. As in the Toro system, rays
in their system progress asynchronously. While Pharr et al.
apply ray scheduling at the bottom of the memory hierarchy,
Navratil et al. aim to reduce RAM-to-cache data transport.
They claim a reduction of RAM-to-L2 cache transport up to
a factor 7.8 compared to depth-first packet traversal. Hanika
et al. propose a two-level ray tracing scheme, in which rays
are first traced through a top-level structure over the bound-
ing volumes of free form patches, and then through a lazily
constructed bottom-level structure over the micro-polygons
of the tessellated patches [HKL10]. Between these steps, rays
are reordered according to patch ID to increase data locality.

Streaming Breadth-first ray traversal combined with a
filtering operation that partitions the set of rays into active
and inactive subsets effectively transforms ray traversal into
a streaming process, where one traversal step provides the
input stream for the next traversal step. Gribble and Ramani
[GR08] propose an approach that during traversal sorts a
stream of rays into a set of active rays (rays that intersect
the current node) and inactive rays. They implement this on
a custom hardware architecture that supports wide SIMD
processing. For a stream of rays, their approach bears resem-
blance to breadth-first ray traversal [Han86]. Tsakok [Tsa09]
proposes a streaming scheme, MBVH/RS, that benefits from
coherency if this is present, and falls back to efficient single-
ray traversal using an multi-branching BVH for divergent
rays. For divergent ray tasks on x86/x64 CPUs, this scheme
is currently the best performing approach.

2.3. Interactive rendering

Interactive ray tracing poses specific challenges for efficient
ray tracing schemes. In an interactive context, many schemes
exhibit overhead that exceeds the gains. Because of this,
schemes developed for out-of-core and offline rendering of-
ten do not transfer to interactive rendering.

Of the approaches targeted at improving data locality in
ray tracing, ray packets have been by far the most successful
for interactive ray tracing. Using ray packets, the cost of data
access is amortized over multiple rays. To work efficiently,
ray packet traversal schemes require that the rays in the set
visit a similar set of acceleration structure nodes. Benthin

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

J. Bikker / Data Locality for In-Core Path Tracing 1939

defines this traversal coherence in his Ph.D. thesis as “the
ratio between the number of spatial cells traversed by all
rays and the sum of cells traversed by any ray” [Ben06].
This ratio is low when rays travel in a similar direction, and
have a similar origin. Without this coherence, ray packet
traversal schemes fail to improve on naive, depth-first single
ray traversal.

Ray packet schemes, which have proven to be success-
ful for interactive rendering of primary rays and shadow
rays, show degrading efficiency for secondary rays. Al-
though some authors report reasonable results for interac-
tive Whitted-style ray tracing [ORM08], for path tracing, the
overhead of these schemes makes them slower than single
ray traversal. Some authors therefore suggest to abandon ray
packets altogether [WBB08], and to focus on efficient single
ray traversal [DHK08, EG08].

To better understand the impact of ray coherence and the
overhead of schemes, we have implemented three schemes
that target interactive performance, which we compare
against base-line performance of single ray traversal. We use
the terminology of Overbeck et al. [ORM08] for the naming
of masked traversal, ranged traversal and partition traversal.
We refer the reader to their paper for a detailed description
of these schemes.

Single ray traversal For baseline performance, we chose
single-ray, depth-first traversal of a multi-branching
BVH (MBVH or QBVH [DHK08, EG08, WBB08]),
rather than the more commonly used 2-ary BVH. Com-
pared to a 2-ary BVH, the 4-ary BVH performs 1.6 to
2.0 times better [DHK08].

Ranged traversal This scheme is based on the packet traver-
sal scheme introduced by Wald et al. (masked traversal,
[WSBW01]), where a node of the acceleration structure
is traversed if any ray in the packet intersects it. Ranged
traversal improves on masked traversal by storing the
first and last active ray in a packet. Rays outside this
range are not tested against the nodes of the accelera-
tion structure, reducing the number of ray-AABB (axis
aligned bounding box) tests. Like masked traversal, this
scheme performs best for primary rays. For secondary
rays, the range may contain a considerable amount of
inactive rays, reducing efficiency.

Partition traversal Designed for secondary rays in a
Whitted-style ray tracer, this scheme partitions the rays
in the packet in-place by swapping inactive rays for ac-
tive rays and by keeping track of the last active ray.
Compared to ranged traversal, this scheme is less ef-
ficient for primary rays, but it performs better for sec-
ondary rays, assuming some coherence is still available.
Partition traversal operates on groups of N rays (where
N is the SIMD width) to reduce overhead.

MBVH/RS Tsakok’s Multi-BVH Ray Stream tracing
scheme, designed for divergent ray distributions. For

Table 1: Performance of four traversal schemes, in 106 rays per
second: single ray traversal through a MBVH, partition traversal,
ranged traversal, and MBVH/RS. Measured for five scenes, for pri-
mary rays and 1, 2 and 3 diffuse bounces, on a single core of a 3.8Ghz
Intel Xeon processor. Bold figures denote the best performing scheme
for each scene and depth.

Scheme Scene Primary 1st 2nd 3rd

Single Modern 3.032 1.874 1.608 1.531
Partition 6.400 1.157 0.790 0.723
Ranged 9.102 0.707 0.448 0.399
MBVH/RS 3.539 1.793 1.421 1.324
Single Sponza 2.788 1.973 1.926 1.890
Partition 5.595 1.231 0.941 0.856
Ranged 7.897 0.800 0.520 0.476
MBVH/RS 3.424 2.174 1.765 1.673
Single Lucy 2.899 1.746 1.645 1.591
Partition 4.145 0.879 0.636 0.605
Ranged 5.310 0.516 0.341 0.313
MBVH/RS 3.180 1.626 1.282 1.251
Single Conference 3.528 2.141 1.718 1.583
Partition 5.937 1.435 1.102 0.956
Ranged 6.976 1.037 0.802 0.715
MBVH/RS 4.959 2.492 1.887 1.631
Single Soda Hall 3.542 2.787 2.527 2.477
Partition 5.349 1.098 0.755 0.682
Ranged 8.821 0.788 0.459 0.430
MBVH/RS 4.151 3.058 2.734 2.631

each MBVH node, the scheme intersects a list of rays
with the four child nodes, generating new lists for
each of them. Like other packet traversal schemes,
MBVH/RS amortizes the cost of fetching a node over
all active rays. Unlike in partition traversal, the gener-
ated lists do not contain any inactive rays. This makes
MBVH/RS more efficient for divergent ray distribu-
tions, where many MBVH nodes are traversed by a
small number of rays.

All traversal scheme implementations are hand-tuned for
optimal performance.

Table 1 shows performance figures for the five scenes
shown in Figure 3. Using a 4-ary BVH, baseline perfor-
mance slowly degrades for each diffuse bounce. For primary
rays, ranged traversal outperforms all other traversal meth-
ods by a significant margin. After one diffuse bounce, only
MBVH/RS outperforms single ray traversal, for some scenes,
and by a small margin. After three diffuse bounces, ranged
traversal only achieves 17–26% of single ray traversal perfor-
mance, while partition traversal achieves 27–60% of single
ray traversal performance. MBVH/RS achieves between 79%
and 106%.

To understand why the traversal schemes perform so
poorly for divergent ray distributions, we measured how
many active rays visit the nodes of the acceleration

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1940 J. Bikker / Data Locality for In-Core Path Tracing

Figure 3: The five scenes used in our experiments: Modern Room from Let there be Light (88k triangles), the Sponza Atrium
(93k), Conference Room (273k), Sibenik Cathedral with the Lucy statue (603k) and Soda Hall (2.1M). Rendered with up to 1k
samples per pixel, and a maximum of six diffuse bounces.

Table 2: Average number of rays per visited leaf/interior node of the
BVH, per recursion depth, out of the original 256 rays in a 16×16
ray packet. Measured for the Modern Room scene.

Depth primary 1st 2nd 3rd

Ranged/partition Interior 94.38 9.12 4.71 3.84
Leaf 37.88 3.34 1.63 1.30

MBVH/RS Interior 170.17 13.25 7.01 5.70
Leaf 97.57 6.26 3.20 2.60

structure. Table 2 shows the average number of rays (of the
original packet) that intersects each visited node. For a traver-
sal scheme to work well, this number should be high. How-
ever, for the Modern Room scene (Figure 3a), this number
drops rapidly after only one diffuse bounce. Note that this
number is an average: even for random ray distributions, all
rays will intersect the root node of the BVH (assuming the
camera is within the scene bounds). We therefore also mea-
sured the average number of rays that intersects the leafs of
the acceleration structure. After a few diffuse bounces, this
number approaches one. The MBVH/RS algorithm performs
better, as it uses a relatively shallow BVH.

2.4. Discussion

Ray tracing efficiency for divergent ray distributions is af-
fected by the low average number of rays that is active when
visiting the nodes of the acceleration structure. The result of
this is that the cost of fetching data from L3 cache and mem-
ory is shared by a small number of rays. The low number of
active rays also leads to poor SIMD utilisation.

The low average number is caused by the packet sizes
for which existing schemes perform optimally. Ranged and
partition traversal, as well as MBVH/RS, perform best for
packets of 64 to 1024 rays [ORM08, Tsa09]. Although larger
ray packets would lead to higher active ray counts, in practice
this reduces overall efficiency of these schemes.

A scheme that is able to traverse very large ray packets, on
the other hand, would exhaust the L1 cache for the ray data
alone in the first nodes of the acceleration structure.

An optimal traversal scheme would operate on the same
number of rays at each level of the acceleration structure.
This requires batching of rays at all levels.

Although batching could improve data locality, it has some
disadvantages: the batching itself may introduce considerable
overhead. Batched rays must store their full state. For BVH
traversal, this includes a traversal stack.

3. Data-Parallel Ray Tracing

In the previous section, we have shown that schemes that are
designed to improve data locality in ray tracing work well for
coherent ray distributions, such as those found in Whitted-
style ray tracing, but fail to improve data locality for divergent
ray distributions, as found in path tracing. Where Whitted-
style ray tracing benefits from a task-centric approach (where
a task is a ray query or a ray packet query), path tracing may
benefit more from a data-centric approach.

In this section, we describe a scheme, RayGrid, that lo-
cally batches rays, until enough work is available to amortize
the cost of cache misses over many rays. Our scheme is sim-
ilar to the scheme described by Pharr et al. [PKGH97], but
targets the top of the memory hierarchy. We analyse the char-
acteristics of this scheme in the context of interactive, in-core
rendering.

3.1. Algorithm overview

We will first describe the scheme developed by Pharr et al.,
which was designed for out-of-core rendering in the Toro
system. We will then describe our RayGrid system, which
borrows from the original scheme and makes it suitable for
in-core rendering.

3.1.1. Data structures used in Toro

The Toro system uses a number of data structures. The first
is a set of static regular voxel grids, which stores the scene
geometry: the geometry grids. One such grid is created per
geometric object in the scene. Primitives that stride voxel

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

J. Bikker / Data Locality for In-Core Path Tracing 1941

Figure 4: Data structures used in the Toro system: geom-
etry grids enclosing two geometric objects (black), and the
scheduling grid, used for advancing rays through the scene
(blue). The cells of the geometry grid typically contain thou-
sands of primitives, which are stored in another grid, the
acceleration grid (not shown).

boundaries are stored in all grid cells they overlap. Geom-
etry inside a grid cell is stored sequentially in memory, so
that spatial coherence in 3D equals memory coherence. The
static grids do not reside in main memory, and are accessed
via a caching mechanism that loads and evicts entire grid
cells at once. For this to be efficient, the grid cells must store
thousands of primitives. This requires a secondary acceler-
ation structure inside each grid cell, for which Pharr et al.
propose another regular grid. This grid is referred to as the
acceleration grid. Finally, rays traverse a third regular grid,
the scheduling grid.

The data structures are shown in Figure 4. For clarity, the
acceleration grid has been omitted in this figure.

3.1.2. Batching for out-of-core rendering in Toro

Newly created rays are queued in the cells of the scheduling
grid. Rays are advanced by processing grid cells from the
scheduling grid. When a grid cell is scheduled for process-
ing, each queued ray in it is tested for intersection with the
geometry inside each overlapping geometry voxel, and, if no
intersection occurred, advanced to the nearest neighbouring
grid cell, where it awaits further processing.

The system schedules grid cells in the following order:
ray queues in the scheduling grid for which all geometry
data is cached are processed first. Once these are depleted,
the system loads geometry into the cache for the largest ray
queue. This way, the cost of loading data into the cache is
amortized over as many queued rays as possible.

In this system, processing of an individual ray does not
necessarily lead to completion: rays are merely advanced to
the next voxel. The implication of this is that ray traversal
is asynchronous: the order in which rays arrive is undefined,
and the potential contribution of each individual ray to the
final image must be explicitly stored with the ray.

3.1.3. Batching for In-Core rendering

In the Toro system, the cost of loading geometry into the
cache is determined by file I/O, patch tessellation, generating
procedural geometry and displacement mapping. Compared
to in-core rendering, where caching is used to reduce the
cost of RAM to L3/L2/L1 data transfer, these costs are high,
and justify considerable overhead. This explains why a sim-
ilar approach has not been considered for in-core rendering,
where overhead can easily nullify the potential gains of a
scheme.

Like the Toro system, our RayGrid scheme uses a coarse
spatial subdivision for geometry that is used to improve data
locality for geometry data. Instead of a regular grid, we
use a shallow octree structure, which adapts itself to local
scene complexity. This is proposed by Pharr et al., but not
implemented in the Toro system. We queue rays directly in
the voxels of the octree, rather than in a separate structure.
Like the Toro system, we store thousands of polygons in oc-
tree nodes. To intersect these efficiently, we use an MBVH
per octree node.

New rays are added to the system by placing them in
ray queues, associated with octree nodes. The system then
processes ray queues ordered by size.

Overhead in RayGrid has been reduced by careful data
layout and code optimisation. The resulting system performs
significantly better than existing approaches for divergent
rays.

3.2. Data structures

This subsection discusses the main data structures used in
RayGrid. The scheme uses a hybrid data structure, consisting
of a shallow octree, which contain MBVHs for the geometry
in each octree leaf.

3.2.1. Octree

Our system uses a shallow octree to subdivide the scene
geometry. The octree is extended with spatial bounds and
neighbour links, to allow for stack-less ray propagation: rays
that leave an octree node through a boundary plane are added
to the octree node that the plane links to. If this is an inte-
rior node, the ray descents to the leaf node that contains the
entry point of the ray. The octree adapts itself to local scene

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1942 J. Bikker / Data Locality for In-Core Path Tracing

complexity, while the stack-less traversal maintains the
benefits of regular grid traversal.

The actual size of an octree node in memory is of little
importance for the efficiency of the scheme: compared to
overall memory usage for geometry, the octree node size is
negligible.

3.2.2. MBVH

An octree node typically stores thousands of primitives. We
further subdivide this geometry using an MBVH, which is
traversed using the MBVH/RS algorithm. The MBVH is
constructed by collapsing a 2-ary BVH, as described by
Dammertz et al. [DHK08]. Since each octree node contain-
ing geometry has its own MBVH, we refer to these as mini-
MBVHs.

3.2.3. Ray queues

Newly added rays are stored in ray queues. A ray queue is a
container of a fixed size, that stores rays by value. Ray queues
are stored in three linked lists: one for empty ray queues, one
for partially filled ray queues, and one for full ray queues.
Initially, all ray queues are stored in the empty ray queue
list. When a ray is added to an octree node that does not yet
contain any rays, the system assigns one ray queue from the
empty ray queue list to the octree node, and adds the ray to
this list. If the octree node already has a ray queue, the ray is
added to that queue. If the queue is full after adding the ray,
it is decoupled from the octree node, and added to the list of
full queues.

The somewhat elaborate system for storing rays has a
number of advantages:

• No run-time memory management is required to store
arbitrary amounts of rays per octree node;

• Many processed ray queues are full ray queues. This
amortizes the cost of fetching geometry data into the
hardware caches over a large number of rays, and leads
to efficient traversal using the MBVH/RS algorithm.

A non-empty ray queue stores a pointer to the octree node
it belongs to. Multiple full ray queues can belong to the same
octree node. Effectively, this allows us to store an arbitrary
amount of rays per octree node, divided over zero or more
full ray queues, and zero or one partially filled ray queues.

Rays are stored by value in the ray queues, in SoA (“struc-
ture of arrays”) format. The queue stores the x-coordinates
of all ray origins consecutively in memory, then the y-
coordinates, and so on. This data layout is more suitable for
SIMD processing than the “array of structures”, where full
ray records are stored consecutively. Although ray queues
could also store ray indices, this requires one level of indi-

rection, which in practice proves to have a small impact on
performance. We also measured the impact of moving a ray
from one queue to another in SoA rather than the AoS (“ar-
ray of structures”) format. Despite the less coherent memory
writes for the SoA format (each stored float is written to a
different cache line), this is not slower in practice. The SoA
format does allow us to intersect the rays with the boundary
planes of an octree node using SIMD code, which makes this
layout the preferred one.

The optimal size for a ray queue is determined by bal-
ancing the optimal stream size for the MBVH/RS algorithm
(256–1024) and the cost of having many partially filled ray
queues. The cost of exchanging a full ray queue for an empty
one is negligible.

3.2.4. Ray data

Our scheme depends on the availability of large numbers of
rays to run efficiently. With many rays in flight, the size of
a single ray record is important. We store a ray in 48 bytes
(11 floats and an integer), by storing the ray origin and di-
rection, the nearest intersection distance, the potential con-
tribution of the ray, and the index of the image pixel the
ray contributes to. Since the contribution information is only
needed during shading, this data can be stored separately per
pixel, which reduces the amount of data copied per ray to
36 bytes (8 floats and an integer).

Since the ray direction is always normalised, it is possi-
ble to store only two components of the vector, and derive
the third whenever it is needed. Although this reduces the
ray record to only 32 bytes, this did not result in improved
performance.

3.3. Ray traversal

Once all rays have been added into the system, typically a
large number of full ray queues is available in the list of full
ray queues. Ray traversal then proceeds, starting with full ray
queues. Once these are depleted, partially filled ray queues
are processed, until no active rays remain in the system.
Each processed ray queue is returned to the list of empty
ray queues. At the end of the process, this list once again
contains all ray queues.

Processing a ray queue consists of two steps:

1. intersection of the rays with the primitives in the octree
node, and

2. advancing rays to neighbouring nodes, if no intersection
was found.

To intersect the rays with geometry, the rays in the queue
are converted to the AoS format, suitable for the MBVH/RS
algorithm, and then traversed through the mini-MBVH

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

J. Bikker / Data Locality for In-Core Path Tracing 1943

associated with the current octree node. For this, we use
an unmodified version of the MBVH/RS algorithm.

To advance a ray to a neighbouring node, we first deter-
mine the boundary plane through which the ray leaves the
current octree node. The neighbour link of this plane then
determines the destination for the ray. Since we use an oc-
tree, it is possible that the neighbour node is not a leaf node.
If this is the case, the ray is recursively added to the child
node that contains the ray entry point, until we reach a leaf.

Ray traversal in RayGrid is shown in pseudo-code in
algorithm 1.

Algorithm 1: Octree traversal in RayGrid. Rays are added to the
octree leaf nodes that contain the ray origins. Once all rays have
been added, ray queues are processed, starting with full queues, until
all rays have terminated.

queuef ull ← {}
queuepartial ← {}
queueempty ← allocatequeues()
nodecam ← octree.f indleaf (camera.getpos())
for each ray in rays[0..N − 1]

add(nodecam.getqueue(), ray)
do

if not queuef ull .empty()
process(queuef ull .head())

else if not queuepartial .empty()
process(queuepartial .head())

else break
end

function process(Queue q)
for each ray in q

if intersect(ray, q.node.mbvh)
f inalize(ray)

for each link in neighbourlinks

for each active ray in q

if ray.intersect(link.getplane())
neighbor ← link.getneighbor()
if (neighbor.getqueue() = null)

neighbor.setqueue(queueempty .head())
queuepartial .add(neighbor.getqueue())

f ull← neighbor.getqueue().add(ray)
if(f ull)

queuef ull .add(neighbor.getqueue())
neighbor.setqueue(null)

queueempty .add(q)
end function

The high-level octree traversal is illustrated in Figure 5.
Rays are added in octree node A, which contains the camera.
Once all rays have been added to the system, the ray queue
for node A is processed. Rays propagate from node A to node
B. In node B, a new ray is added by the shading code. This
secondary ray is advanced together with the primary rays, and

Figure 5: Advancing rays through the octree structure.

arrives in node C. Once node C is scheduled for processing,
this ray will be processed together with the primary rays from
node A.

In a practical implementation, RayGrid will not handle
primary rays: as discussed in Section 2.3, ray packet traversal
is more efficient in this case. Secondary rays however are
efficiently handled by our scheme.

3.4. Efficiency characteristics

As mentioned in Section 3.3, full ray queues are always pro-
cessed first. Doing so may saturate partially filled ray queues
belonging to neighbouring octree nodes. At some point, there
are no full ray queues left, and the system starts processing
partially filled ray queues. This reduces the efficiency of the
algorithm: the cost of fetching geometry for an octree leaf
node is amortized over fewer rays, and the MBVH is tra-
versed with a smaller ray packet.

This tail effect can be reduced by feeding more rays in the
system. There are two possible strategies for this:

• By feeding a large amount of rays before processing ray
queues, the tail will be relatively short. This increases the
memory requirements of the algorithm.

• Alternatively, feeding rays may be coupled to queue pro-
cessing: by feeding new rays only when no full ray
queues are available, memory requirements stay low.
This does however require a tight coupling between the
code that generates the new rays, and the ray queue
scheduler.

In the context of a path tracer, where typically many passes
are processed in succession to reduce variance, it is also pos-
sible to stop processing ray queues when no full ray queues
are available. The partially processed rays remain in the sys-
tem, and add to subsequent passes. Only when the last pass of
the path tracer has completed, the tail needs to be processed.
In this scenario, the scheme almost exclusively operates on
full ray queues.

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1944 J. Bikker / Data Locality for In-Core Path Tracing

3.5. Memory use

The requirement to have many rays in flight leads to rela-
tively high memory requirements for the proposed traversal
scheme.

The size of a single ray in memory is 36 bytes. As discussed
in subsection 3.2.4, rays are stored by value in the ray queues.
For a set of N active rays and a queue size of M , a minimum
of M/N full queues is required. However, a partially filled
queue requires the same amount of memory as a full one.
Since each octree leaf node may contain zero or one partially
filled queues, the memory required by RayGrid is (O ·M +
N) · 36, where O is the number of octree leaf nodes.

We found a queue size M = 384 and a maximum number
of primitives per octree leaf of 4096 to be a good choice
for most scenes. For the Conference Room, this results in
O = 386 octree leaf nodes. For N = 10242 rays, the memory
use is 41.09MB.

3.6. Cache use

Perhaps equally or more important is the use of cache mem-
ory for the algorithm. We measured the average amount of
memory that is accessed while processing an octree leaf for
the Conference Room scene. For this scene, using the pro-
posed parameters, an octree leaf node contains 818 primitives
on average. Processing a leaf involves accessing 818× 32
bytes for the primitives, 384× 36 bytes for a full queue,
and 384× 36 bytes in the queues of the neighbouring nodes.
The 818 primitives are stored in a mini-MBVH of (on av-
erage) 175 nodes of 112 bytes each. The total amount of
memory accessed for an octree leaf is thus 73KB on aver-
age, which is well below the size of the L2 cache in our
system.

4. Results

In this section, we discuss the performance of the RayGrid
scheme.

4.1. Performance

We have measured the performance of our scheme. In
Table 3, we compare the performance of RayGrid against
base-line single-ray performance and the original MBVH/RS
algorithm.

As can be seen from these figures, our RayGrid scheme
consistently outperforms MBVH single ray traversal and
MBVH/RS. In many cases this is only by a small margin.
However, compared to the MBVH/RS algorithm, the margin
is larger.

Table 4 provides more insight in the improved efficiency.
Except for primary rays, the MBVH/RS scheme is able to

Table 3: Performance of our scheme compared to base-line single-
ray MBVH traversal and MBVH/RS. Measured for five scenes, on
a single core of a 3.8Ghz Intel Xeon processor. Bold percentages
indicate performance relative to base-line performance.

Scheme Scene 1st 2nd 3rd 4th

Single Modern 1.874 1.608 1.531 1.497
MBVH/RS 1.793 1.421 1.324 1.275

−4.3% −11.6% −13.5% −14.8%
RayGrid 2.392 2.136 2.115 2.113

+27.6% +32.9% +38.1% +41.1%
Single Sponza 1.973 1.926 1.890 1.869
MBVH/RS 2.174 1.765 1.673 1.636

+10.2% −8.4% −11.5% −12.5%
RayGrid 2.311 2.325 2.310 2.315

+17.1% +20.7% +22.2% +23.7%
Single Lucy 1.746 1.645 1.591 1.472
MBVH/RS 1.626 1.282 1.251 1.122

−6.9% −22.1% −21.4% −23.8%
RayGrid 1.855 1.840 1.806 1.763

+6.2% +11.9% +13.55% +19.8%
Single Conf. 2.141 1.718 1.583 1.467
MBVH/RS 2.492 1.887 1.631 1.499

+16.4% +9.9% +3.0% +2.2%
RayGrid 2.355 2.055 1.910 1.838

+10.0% +19.6% +20.6% +25.3%
Single Soda 2.787 2.527 2.477 2.450
MBVH/RS 3.058 2.734 2.631 2.577

+9.7% +8.2% +6.2% +5.2%
RayGrid 3.482 3.230 3.188 3.101

+24.9% +27.8% +28.7% +26.6%

use a significantly larger number of rays in the visited nodes
in the RayGrid algorithm.

To gain more insight in the performance characteristics,we
gathered several statistics. For all scenes, optimal or near-
optimal performance is achieved for a ray queue size of 384
and a maximum number of primitives per octree leaf node
of 4096. For the Conference Room scene, these parame-
ters result in an octree of 441 nodes (of which 386 nodes
are leaf nodes). The average depth of an octree leaf node
is 4.15. On average, octree leafs contain 818 primitives, for
which mini-MBVHs are constructed with an average size of
175 nodes and an average leaf depth of 7.0. For compari-
son, we constructed an MBVH for the same scene, without
the shallow octree: the average depth of leaf nodes in this
structure is 10.9, which means that for this scene, the octree
replaces the first 3.9 levels of the MBVH.

Profiling indicates that in the RayGrid algorithm, 47.3% is
spent on octree traversal, versus 26.3% on MBVH traversal,
indicating that octree traversal is considerably more expen-
sive than MBVH traversal.

To measure the characteristics of the RayGrid algorithm
in terms of caching behaviour we implemented a cache

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

J. Bikker / Data Locality for In-Core Path Tracing 1945

Table 4: Average number of rays per visited node of a mini-MBVH
in an octree leaf when using the RayGrid algorithm. Measured for
the Modern Room scene.

Depth Primary 1st 2nd 3rd

RayGrid Interior 149.50 22.33 14.25 12.51
Leaf 77.87 12.26 7.39 6.36

Table 5: Detailed cache behaviour for the Conference Room scene,
rendered using the RayGrid algorithm, measured for different batch
sizes. Hit counts are in 106 hits for a 512×512 image. Esti-
mated cost in 109 cycles, assuming 4:11:39:107 cycle latencies for
L1:L2:L3:memory access. For comparison, the last column con-
tains figures for the original MBVH/RS algorithm (without octree
traversal).

64 128 256 512 1024 MBVH/RS

L1 read hit 907.1 856.8 760.1 665.2 615.2 1023.0
L2 read hit 10.9 24.7 89.9 158.6 185.1 78.5
L3 read hit 9.7 8.2 6.7 6.5 11.0 31.0
mem read 11.2 11.4 11.7 11.7 11.6 6.6
L1 write hit 428.8 399.2 351.5 341.0 338.2 276.1
L2 write hit 63.0 124.9 279.6 361.5 369.4 111.7
L3 write hit 40.5 33.5 27.7 36.9 95.3 110.2
mem write 41.9 43.7 45.7 43.9 42.1 21.4
cost (est.) 5328.8 5234.6 5536.5 5915.1 6168.0 6872.6
L1% 68.1 65.5 54.9 45.0 39.9 54.1
L2% 2.3 5.2 17.9 29.5 33.0 10.1
L3% 7.1 6.1 4.7 4.3 7.0 12.9
mem% 22.6 23.2 22.5 21.2 20.1 22.9

simulator. The simulator mimics the cache hierarchy of our
test system, with a32KB L1, 256KB L2 cache and 2MB L3
cache. Note that our test system uses a 12MB shared L3
cache for six CPU cores; the simulated 2MB L3 cache is an
approximation of the per-core L3 capacity when all cores run
the RayGrid algorithm. The L1 and L2 caches are 8-way set
associative, L3 is 16-way set associative. The caches use a
pseudo-LRU eviction scheme. We use code instrumentation
to record reads and writes.

In Table 5, cache behaviour of the RayGrid algorithm and
MBVH/RS is compared for the Conference Room scene. We
estimate the total cost of memory access by summing L1, L2,
L3 and RAM accesses, multiplied by the respective latencies
of each level (4, 11, 39, 107 cycles on our test platform).

Compared to the MBVH/RS, the RayGrid algorithm
achieves a significant reduction in L3 cache access. Although
the number of RAM transfers increased, the (estimated) over-
all cost of memory access is reduced.

5. Conclusion and Future Work

In this paper, we have investigated efficient ray tracing in the
context of a path tracer.

High performance is achieved by distinguishing between
primary rays and rays after one diffuse bounce. For primary
rays, the ranged traversal algorithm performs best. After one
diffuse bounce, it is hard to outperform MBVH single ray
traversal. We proposed a data centric ray traversal scheme
inspired by the work of Pharr et al., that manages to im-
prove on this base line performance, albeit by a small margin.
This improvement is achieved by improving data locality, by
batching rays in the leafs of a shallow octree. The improved
data locality leads to improved L2 cache efficiency and SIMD
utilisation.

We would like to further investigate the use of batching for
improved data locality, perhaps without relying on an octree
data structure, which is currently required for efficient leaf-
to-leaf ray propagation. Alternatively, an implementation on
an architecture that allows for efficient gather / scatter would
allow for more efficient octree traversal, which might even
lead to improved L1 cache efficiency.

Acknowledgements

The Modern Room scene was modelled by students of the
IGAD program of the NHTV University of Applied Sciences.
The Sponza scene and the Sibenik Cathedral were modeled
by Marco Dabrovik. The Bugback Toad model was mod-
elled by Son Kim. The Lucy Statue was originally obtained
from the Stanford 3D Scanning Repository. The ‘Soda Hall’
scene is the U.C. Berkeley Soda Hall WALKTHRU Model.
The Conference Room model was created by Anat Grynberg
and Greg Ward. The author wishes to thank Erik Jansen for
proofreading and fruitful discussions.

This research was supported by an Intel research grant.

References

[Abr97] ABRASH M.: Michael Abrash’s Graphics Program-
ming Black Book (Special Edition). Coriolis Group Books,
1997.

[BBS*09] BUDGE B., BERNARDIN T., STUART J. A., SENGUPTA

S., JOY K. I., OWENS J. D.: Out-of-core Data Management
for Path Tracing on Hybrid Resources. Computer Graph-
ics Forum 28, 2 (2009), 385–396.

[BEL*07] BOULOS S., EDWARDS D., LACEWELL J. D., KNISS

J., KAUTZ J., SHIRLEY P., WALD I.: Packet-based Whitted
and Distribution Ray Tracing. In GI ’07: Proceedings of
Graphics Interface 2007 (New York, NY, USA, 2007),
ACM, Montreal, Canada, pp. 177–184.

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1946 J. Bikker / Data Locality for In-Core Path Tracing

[Ben06] BENTHIN C.: Realtime Ray Tracing on Current
CPU Architectures. PhD thesis, Saarland University,
Saarbrücken, Germany, January 2006.

[Bik07] BIKKER J.: Real-time Ray Tracing through the Eyes
of a Game Developer. In RT ’07: Proceedings of the 2007
IEEE Symposium on Interactive Ray Tracing (Washing-
ton, DC, USA, 2007), IEEE Computer Society, p. 1.

[BO10] BRYANT R. E., O’Hallaron D.R.: Computer
Systems: A Programmer’s Perspective, 2nd ed. Addison-
Wesley Publishing Company, USA, 2010.

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive Ray
Packet Reordering. In Proceedings of IEEE Symposium on
Interactive Ray Tracing 2008 (Los Alamitos, CA, USA,
2008), IEEE Computer Society, pp. 131–138.

[BWW*11] BENTHIN C., WALD I., WOOP S., ERNST M.,
MARK W. R.: Combining Single and Packet Ray Tracing
for Arbitrary Ray Distributions on the Intel MIC Architec-
ture. IEEE Transactions on Visualization and Computer
Graphics 99, PrePrints (2011).

[DDHS00] DIEFENDORFF K., DUBEY P. K., HOCHSPRUNG R.,
SCALES H., : AltiVec Extension to PowerPC Accelerates
Media Processing. IEEE Micro 20 (March2000), 85–95.

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast SIMD ray tracing of
incoherent rays. Computer Graphics Forum 27, 4 (2008),
1225–1233.

[Dog07] DOGGETT M.: AMD’s Radeon HD 2900. Tech.
Rep., San Diego, August 2007.

[EG08] ERNST M., GREINER G.: Multi Bounding Volume Hi-
erarchies. In Proceedings of the IEEE Symposium on In-
teractive Ray Tracing (Los Angels, CA,2008), pp. 35–40.

[GL10] GARANZHA K., LOOP C.: Fast ray sorting and breadth-
first packet traversal for GPU ray tracing. Computer
Graphics Forum 29 (2010), 289–298.

[Gla09] GLASKOWSKY P. N.: NVIDIA’s Fermi: The First
Complete GPU Computing Architecture. Tech. Rep., San
Francisco, CA, 2009.

[GR08] GRIBBLE C., RAMANI K.: Coherent Ray Tracing via
Stream Filtering. In Proceedings of the IEEE Sympo-
sium on Interactive Ray Tracing (Los Angels, CA, August
2008), no. 3 (2008), pp. 59–66.

[Han86] HANRAHAN P.: Using Caching and Breadth-first
Search to Speed up Ray-tracing. In Proceedings on Graph-
ics Interface ’86/Vision Interface ’86 (Toronto, Ont.,
Canada, Canada, 1986), Canadian Information Process-
ing Society, pp. 56–61.

[HKL10] HANIKA J., KELLER A., LENSCH H. P. A.: Two-level
Ray Tracing with Reordering for Highly Complex Scenes.
In Proceedings of Graphics Interface 2010 (Toronto, Ont.,
Canada, Canada, 2010), GI ’10, Canadian Information
Processing Society, pp. 145–152.

[Int10] Intel: Intel Many Integrated Core Architecture, 2010.

[KA02] KENNEDY K., ALLEN J. R.: Optimizing Compilers for
Modern Architectures: A Dependence-based Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[KS02] KATO T., SAITO J.: “Kilauea”: Parallel Global Il-
lumination Renderer. In Proceedings of the Fourth Eu-
rographics Workshop on Parallel Graphics and Visual-
ization (Aire-la Ville, Switzerland, Switzerland, 2002),
EGPGV ’02, Eurographics Association, pp. 7–16.

[Lom11] LOMONT C.: Introduction to Intel Advanced Vector
Extensions, 2011.

[MMAM07] MANSSON E., MUNKBERG J., AKENINE-MOLLER

T.: Deep Coherent Ray Tracing. In Proceedings of
the 2007 IEEE Symposium on Interactive Ray Tracing
(Washington, DC, USA, 2007), IEEE Computer Society,
pp. 79–85.

[NFLM07] NAVRATIL P. A., FUSSELL D. S., LIN C., MARK

W. R.: Dynamic Ray Scheduling to Improve Ray Co-
herence and Bandwidth Utilization. In Proceedings of
the 2007 IEEE Symposium on Interactive Ray Tracing
(Washington, DC, USA, 2007), IEEE Computer Society,
pp. 95–104.

[ORM08] OVERBECK R., RAMAMOORTHI R., MARK W. R.:
Large Ray Packets for Real-time Whitted Ray Tracing.
In IEEE/EG Symposium on Interactive Ray Tracing (IRT)
(Los Angels, CA, Aug 2008), pp. 41–48.

[PBB*02] PAUL W. J., BACH P., BOSCH M., FISCHER J.,
LICHTENAU C., Röhrig J.: Real PRAM Programming. In
Proceedings of the 8th International Euro-Par Conference
on Parallel Processing (London, UK, 2002), Euro-Par ’02,
Springer-Verlag, Berlin, Germany, pp. 522–531.

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN

P.: Rendering Complex Scenes with Memory-coherent
Ray Tracing. In SIGGRAPH ‘97: Proceedings of the
24th annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 101–108.

[PMS*99] PARKER S., MARTIN W., SLOAN P.-P. J., SHIRLEY

P., SMITS B., HANSEN C.: Interactive Ray Tracing.
In I3D ’99: Proceedings of the 1999 symposium on
Interactive 3D graphics (New York, NY, USA, 1999),
ACM, pp. 119–126.

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

J. Bikker / Data Locality for In-Core Path Tracing 1947

[Res07] RESHETOV A.: Faster Ray Packets - Triangle Inter-
section through Vertex Culling. In RT ’07: Proceedings
of the 2007 IEEE Symposium on Interactive Ray Tracing
(Washington, DC, USA, 2007), IEEE Computer Society,
pp. 105–112.

[RJ97] REINHARD E., JANSEN F. W.,: Rendering Large
Scenes using Parallel Ray Tracing. Parallel Computer 23
(July1997), 873–885.

[SCS*08] SEILER L., CARMEAN D., SPRANGLE E., FORSYTH T.,
ABRASH M., DUBEY P., JUNKINS S., LAKE A., SUGERMAN J.,
CAVIN R., ESPASA R., GROCHOWSKI E., JUAN T., HANRAHAN

P.: Larrabee: a Many-Core x86 Architecture for Visual
Computing. In ACM SIGGRAPH 2008 papers (New York,
NY, USA, 2008), ACM, pp. 18:1–18:15.

[SWS02] SCHMITTLER J., WALD I., SLUSALLEK P.: SaarCOR:
a Hardware Architecture for Ray Tracing. In HWWS ’02:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware (Aire-la Ville, Switzer-
land, Switzerland, 2002), Eurographics Association,
pp. 27–36.

[TH99] THAKKAR S., HUFF T.: Intel Streaming SIMD Exten-
sions. IEEE Computer 32 (1999), pp. 26–24.

[Tsa09] TSAKOK J. A.: Faster Incoherent Rays: Multi-BVH
Ray Stream Tracing. In HPG ’09: Proceedings of the Con-
ference on High Performance Graphics 2009 (New York,
NY, USA, 2009), ACM, pp. 151–158.

[vdZRJ95] VAN DER ZWAAN M., REINHARD E., JANSEN F. W.:
Pyramid Clipping for Efficient Ray Traversal. Rendering
Techniques’95 (1995), 1–10.

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting Rid
of Packets: Efficient SIMD Single-Ray Traversal us-
ing Multi-branching BVHs. In Symposium on Inter-
active Ray Tracing 2008 (Los Angeles, CA, 2008),
IEEE/Eurographics, pp. 49–57.

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray Trac-
ing Deformable Scenes using Dynamic Bounding Vol-
ume Hierarchies. ACM Transactions on Graphics 26, 1
(2007). ACM, New York, NY, USA.

[WGBK07] WALD I., GRIBBLE C. P., BOULOS S., KENSLER A.:
SIMD Ray Stream Tracing - SIMD Ray Traversal with
Generalized Ray Packets and On-the-fly Re-Ordering.
Tech. Rep. UUSCI-2007-012, SCI Institute, University
of Utah, 2007.

[WIK*06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER

S. G.: Ray Tracing Animated Scenes using Coherent Grid
Traversal. ACM Transactions on Graphics 25, 3 (2006),
485–493.

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER

M.: Interactive Rendering with Coherent Ray Trac-
ing. Computer Graphics Forum 20, 3 (2001), 153–
165.

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

